Teilnehmen Anmelden

Caique Rodrigues

Mitglied seit 2024

Diamond League

31310 Punkte
Einführung in die Datenanalyse in Google Cloud Earned Dez 10, 2025 EST
Datenmanagement und ‑speicherung in der Cloud Earned Dez 10, 2025 EST
Data Transformation in the Cloud Earned Dez 10, 2025 EST
Die Möglichkeiten des Storytelling: Daten in der Cloud visualisieren Earned Dez 10, 2025 EST
Das Gelernte umsetzen: Vorbereitung auf die Arbeit als Cloud Data Analyst Earned Dez 10, 2025 EST
Rich-Dokumente mit Gemini Multimodal und Multimodal RAG untersuchen Earned Mär 14, 2025 EDT
Vektorsuche und Einbettungen Earned Mär 6, 2025 EST
Einstieg in die Bildgenerierung Earned Mär 6, 2025 EST
Einführung in KI und maschinelles Lernen in Google Cloud Earned Mär 6, 2025 EST
Put It All Together: Prepare for a Cloud Data Analyst Job Earned Feb 7, 2025 EST
The Power of Storytelling: How to Visualize Data in the Cloud Earned Feb 7, 2025 EST
Data Transformation in the Cloud Earned Feb 7, 2025 EST
Data Management and Storage in the Cloud Earned Feb 6, 2025 EST
Introduction to Data Analytics in Google Cloud Earned Feb 4, 2025 EST
Daten für ML-APIs in Google Cloud vorbereiten Earned Nov 5, 2024 EST
Cloud Load Balancing in der Compute Engine implementieren Earned Nov 5, 2024 EST
Geschütztes Google Cloud-Netzwerk erstellen Earned Nov 5, 2024 EST
Umgebung für die Anwendungsentwicklung in Google Cloud einrichten Earned Nov 5, 2024 EST
Einführung in das Cloud-Computing von Google: Daten, ML und KI in Google Cloud Earned Okt 21, 2024 EDT
Einführung in das Cloud-Computing von Google: Netzwerke und Sicherheit in Google Cloud Earned Okt 21, 2024 EDT
Einführung in das Cloud-Computing von Google: Infrastruktur in Google Cloud Earned Sep 23, 2024 EDT
Einführung in das Cloud-Computing von Google: Cloud-Computing-Grundlagen Earned Sep 16, 2024 EDT
Einführung in Large Language Models Earned Sep 13, 2024 EDT
Einführung in generative KI Earned Sep 12, 2024 EDT

Dies ist der erste von fünf Kursen des Google Cloud Data Analytics Certificate. In diesem Kurs definieren Sie den Bereich der Cloud-Datenanalyse und beschreiben die Rollen und Verantwortlichkeiten von Cloud Data Analysts in Bezug auf Datenakquisition, ‑speicherung, ‑verarbeitung und ‑visualisierung. Sie lernen die Architektur cloudbasierter Tools von Google wie BigQuery und Cloud Storage kennen und erfahren, wie sie Daten effektiv strukturieren, präsentieren und Berichte erstellen.

Weitere Informationen

Dies ist der zweite von fünf Kursen des Google Cloud Data Analytics Certificate. In diesem Kurs wird dargelegt, wie Daten strukturiert und organisiert werden. Sie lernen in praktischen Übungen die Data-Lakehouse-Architektur und Cloud-Komponenten wie BigQuery, Google Cloud Storage und DataProc kennen, um große Datasets effizient zu speichern, zu analysieren und zu verarbeiten.

Weitere Informationen

This is the third of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll begin by getting an overview of the data journey, from collection to insights. You’ll then learn how to use SQL to transform raw data into a usable format. Next, you’ll learn how to transform high volumes of data with a data pipeline. Finally, you’ll gain experience applying transformation strategies to real data sets to solve business needs.

Weitere Informationen

Dies ist der vierte von fünf Kursen des Google Cloud Data Analytics Certificate. In diesem Kurs geht es um die fünf wichtigsten Phasen der Datenvisualisierung in der Cloud: Storytelling, Planung, Datenexploration, Erstellung von Visualisierungen und Datenaustausch. Außerdem lernen Teilnehmer, wie sie mit UI/UX-Kenntnissen wirkungsvolle, cloudnative Visualisierungen erstellen und mit cloudnativen Datenvisualisierungstools Datasets untersuchen, Berichte erstellen und Dashboards entwickeln, die Entscheidungen unterstützen und Zusammenarbeit fördern.

Weitere Informationen

Dies ist der fünfte von fünf Kursen des Google Cloud Data Analytics Certificate. In diesem Kurs werden Sie die Grundlagen und Fähigkeiten aus den Kursen 1 bis 4 in einem praktischen Abschlussprojekt kombinieren und anwenden, das sich auf den gesamten Datenlebenszyklus konzentriert. Sie üben die Verwendung cloudbasierter Tools zum Erfassen, Speichern, Verarbeiten, Analysieren und Visualisieren von Daten und lernen, wie Sie Datenstatistiken effektiv kommunizieren. Am Ende des Kurses schließen Sie ein Projekt ab, das Ihre Fähigkeit demonstriert, Daten aus verschiedenen Quellen effektiv zu strukturieren, Lösungen für unterschiedliche Stakeholder zu präsentieren und Datenerkenntnisse mithilfe cloudbasierter Software zu visualisieren. Außerdem aktualisieren Sie Ihren Lebenslauf und üben Vorstellungsgesprächstechniken, um sich auf Bewerbungen und Vorstellungsgespräche vorzubereiten.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Rich-Dokumente mit Gemini Multimodal und Multimodal RAG untersuchen weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Verwenden von multimodalen Prompts, um Informationen aus Text- und Bilddaten zu gewinnen; Erstellen einer Videobeschreibung und Abrufen von zusätzlichen, über das Video hinausgehenden Informationen unter Verwendung von Multimodalität mit Gemini; Erstellen von Metadaten von Dokumenten mit Text und Bildern; Ermitteln aller relevanten Textabschnitte und Drucken von Zitationen durch Nutzung von multimodaler Retrieval-Augmented Generation (RAG) mit Gemini.

Weitere Informationen

In diesem Kurs lernen Sie KI-basierte Suchtechnologien, Tools und Anwendungen kennen. Er umfasst folgende Themen: die semantische Suche mithilfe von Vektoreinbettungen, die Hybridsuche, bei der semantische und stichwortbezogene Ansätze kombiniert werden, und Retrieval-Augmented Generation (RAG), die KI-Halluzinationen durch einen fundierten KI-Agenten minimiert. Sie sammeln praktische Erfahrungen mit der Vektorsuche in Vertex AI zum Entwickeln einer intelligenten Suchmaschine.

Weitere Informationen

In diesem Kurs werden Diffusion-Modelle vorgestellt, eine Gruppe verschiedener Machine Learning-Modelle, die kürzlich einige vielversprechende Fortschritte im Bereich Bildgenerierung gemacht haben. Diffusion-Modelle basieren auf physikalischen Konzepten der Thermodynamik und sind in den letzten Jahren in der Forschung und Industrie sehr beliebt geworden. Dabei stützen sich Diffusion-Modelle auf viele innovative Modelle und Tools zur Bildgenerierung in Google Cloud. In diesem Kurs werden Ihnen die theoretischen Grundlagen der Diffusion-Modelle erläutert und wie Sie diese Modelle über Vertex AI trainieren und bereitstellen können.

Weitere Informationen

In diesem Kurs lernen Sie die KI- und ML-Funktionen von Google Cloud kennen. Der Schwerpunkt liegt auf der Entwicklung von Projekten mit generativer und prädiktiver KI. Dabei werden die verschiedenen Technologien, Produkte und Tools vorgestellt, die für den gesamten Lebenszyklus der Datenaufbereitung für KI verfügbar sind. Data Scientists, KI-Entwickler*innen und ML-Engineers können ihr Fachwissen durch interaktive Übungen erweitern.

Weitere Informationen

This is the fifth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll combine and apply the foundational knowledge and skills from courses 1-4 in a hands-on Capstone project that focuses on the full data lifecycle project. You’ll practice using cloud-based tools to acquire, store, process, analyze, visualize, and communicate data insights effectively. By the end of the course, you’ll have completed a project demonstrating their proficiency in effectively structuring data from multiple sources, presenting solutions to varied stakeholders, and visualizing data insights using cloud-based software. You’ll also update your resume and practice interview techniques to help prepare for applying and interviewing for jobs.

Weitere Informationen

This is the fourth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll focus on developing skills in the five key stages of visualizing data in the cloud: storytelling, planning, exploring data, building visualizations, and sharing data with others. You’ll also gain experience using UI/UX skills to wireframe impactful, cloud-native visualizations and work with cloud-native data visualization tools to explore datasets, create reports, and build dashboards that drive decisions and foster collaboration.

Weitere Informationen

This is the third of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll begin by getting an overview of the data journey, from collection to insights. You’ll then learn how to use SQL to transform raw data into a usable format. Next, you’ll learn how to transform high volumes of data with a data pipeline. Finally, you’ll gain experience applying transformation strategies to real data sets to solve business needs.

Weitere Informationen

This is the second of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll explore how data is structured and organized. You’ll gain hands-on experience with the data lakehouse architecture and cloud components like BigQuery, Google Cloud Storage, and DataProc to efficiently store, analyze, and process large datasets.

Weitere Informationen

This is the first of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll define the field of cloud data analysis and describe roles and responsibilities of a cloud data analyst as they relate to data acquisition, storage, processing, and visualization. You’ll explore the architecture of Google Cloud-based tools, like BigQuery and Cloud Storage, and how they are used to effectively structure, present, and report data.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Daten für ML-APIs in Google Cloud vorbereiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bereinigen von Daten mit Dataprep von Trifacta, Ausführen von Datenpipelines in Dataflow, Erstellen von Clustern und Ausführen von Apache Spark-Jobs in Dataproc sowie Aufrufen von ML-APIs, einschließlich der Cloud Natural Language API, Cloud Speech-to-Text API und Video Intelligence API.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Cloud Load Balancing in der Compute Engine implementieren weisen Sie Kenntnisse in folgenden Bereichen nach: virtuelle Maschinen in der Compute Engine erstellen und bereitstellen und Netzwerk- und Application Load Balancer konfigurieren.

Weitere Informationen

Sichern Sie sich ein Skill-Logo, indem Sie den Kurs Geschütztes Google Cloud-Netzwerk erstellen abschließen. Dabei lernen Sie verschiedene netzwerkbezogene Ressourcen kennen, mit denen Sie Ihre Anwendungen in Google Cloud erstellen, skalieren und schützen können.

Weitere Informationen

Erhalten Sie ein Skill-Logo, indem Sie den Kurs „Umgebung für die Anwendungsentwicklung in Google Cloud einrichten“ abschließen. Dabei lernen Sie, wie Sie eine speicherorientierte Cloud-Infrastruktur mithilfe der grundlegenden Funktionen der folgenden Technologien erstellen und verbinden: Cloud Storage, Identity and Access Management, Cloud Functions und Pub/Sub.

Weitere Informationen

Die Kursreihe „Einführung in das Cloud-Computing von Google“ richtet sich an Personen mit geringen oder gar keinen Vorkenntnissen oder Erfahrungen im Bereich Cloud Computing. Sie bietet einen Überblick über Cloud-Grundlagen, Big Data, maschinelles Lernen und die Rolle von Google Cloud in diesem Bereich. Am Ende der Kursreihe können Teilnehmende diese Konzepte erläutern und einige praktische Fähigkeiten demonstrieren. Die Kurse sollten in folgender Reihenfolge absolviert werden: 1. Einführung in das Cloud-Computing von Google: Cloud-Computing-Grundlagen 2. Einführung in das Cloud-Computing von Google: Infrastruktur in Google Cloud 3. Einführung in das Cloud-Computing von Google: Netzwerke und Sicherheit in Google Cloud 4. Einführung in das Cloud-Computing von Google: Daten, ML und KI in Google Cloud Im letzten Kurs der Reihe geht es um verwaltete Big-Data-Dienste, maschinelles Lernen und dessen Vorzüge sowie die Möglichkeit, Ihre Google Cloud-Kompetenzen durch den Erwerb von Skill-L…

Weitere Informationen

Die Kurse „Einführung in das Cloud-Computing von Google“ richten sich an Personen mit wenigen bis gar keinen Vorkenntnissen oder Erfahrungen im Bereich Cloud-Computing Sie bieten einen detaillierten Überblick über Cloud-Grundlagen, Big Data, maschinelles Lernen und die Rolle von Google Cloud in diesem Bereich. Am Ende der Kursreihe können Teilnehmende diese Konzepte erläutern und einige praktische Fähigkeiten demonstrieren. Die Kurse sollten in folgender Reihenfolge absolviert werden: 1. Einführung in das Cloud-Computing von Google: Cloud-Computing-Grundlagen 2. Einführung in das Cloud-Computing von Google: Infrastruktur in Google Cloud 3. Einführung in das Cloud-Computing von Google: Netzwerke und Sicherheit in Google Cloud 4. Einführung in das Cloud-Computing von Google: Daten, ML und KI in Google Cloud Dieser dritte Kurs behandelt Tools zur Cloud-Automatisierung- und -Verwaltung sowie den Aufbau sicherer Netzwerke.

Weitere Informationen

Die Kursreihe „Einführung in das Cloud-Computing von Google“ richtet sich an Personen mit wenigen bis gar keinen Vorkenntnissen oder Erfahrungen im Bereich Cloud-Computing. Sie bietet einen detaillierten Überblick über Cloud-Grundlagen, Big Data, maschinelles Lernen und die Rolle von Google Cloud in diesem Bereich. Am Ende der Kursreihe können Teilnehmende diese Konzepte erläutern und einige praktische Fähigkeiten demonstrieren. Die Kurse sollten in folgender Reihenfolge absolviert werden: 1. Einführung in das Cloud-Computing von Google: Cloud-Computing-Grundlagen 2. Einführung in das Cloud-Computing von Google: Infrastruktur in Google Cloud 3. Einführung in das Cloud-Computing von Google: Netzwerke und Sicherheit in Google Cloud 4. Einführung in das Cloud-Computing von Google: Daten, ML und KI in Google Cloud

Weitere Informationen

Die Kursreihe „Einführung in das Cloud-Computing von Google“ richtet sich an Personen mit geringen oder gar keinen Vorkenntnissen oder Erfahrungen im Bereich Cloud Computing. Sie bietet einen detaillierten Überblick über Cloud-Grundlagen, Big Data, maschinelles Lernen und die Rolle von Google Cloud in diesem Bereich. Am Ende der Kursreihe können Teilnehmende diese Konzepte erläutern und einige praktische Fähigkeiten demonstrieren. Die Kurse sollten in folgender Reihenfolge absolviert werden: 1. Einführung in das Cloud-Computing von Google: Cloud-Computing-Grundlagen 2. Einführung in das Cloud-Computing von Google: Infrastruktur in Google Cloud 3. Einführung in das Cloud-Computing von Google: Netzwerke und Sicherheit in Google Cloud 4. Einführung in das Cloud-Computing von Google: Daten, ML und KI in Google Cloud Diese Kursreihe bietet einen Überblick über Cloud-Computing, verschiedene Nutzungsmöglichkeiten von Google Cloud und verschiedene Computing-Optionen.

Weitere Informationen

In diesem Einführungskurs im Microlearning-Format wird untersucht, was Large Language Models (LLM) sind, für welche Anwendungsfälle sie genutzt werden können und wie die LLM-Leistung durch Feinabstimmung von Prompts gesteigert werden kann. Darüber hinaus werden Tools von Google behandelt, die das Entwickeln eigener Anwendungen basierend auf generativer KI ermöglichen.

Weitere Informationen

In diesem Einführungskurs im Microlearning-Format wird erklärt, was generative KI ist, wie sie genutzt wird und wie sie sich von herkömmlichen Methoden für Machine Learning unterscheidet. Darüber hinaus werden Tools von Google behandelt, mit denen Sie eigene Anwendungen basierend auf generativer KI entwickeln können.

Weitere Informationen