P siva sai
Mitglied seit 2019
Gold League
48660 Punkte
Mitglied seit 2019
Dies ist der erste von fünf Kursen des Google Cloud Cybersecurity Certificate. In diesem Kurs lernen Sie die Grundlagen der Cybersicherheit kennen, darunter den Sicherheitslebenszyklus, die digitale Transformation und wichtige Konzepte des Cloud-Computing. Außerdem erfahren Sie, welche Tools von Cloud Security Analysts in Einstiegspositionen zur Automatisierung von Aufgaben verwendet werden.
Dies ist der zweite von fünf Kursen des Google Cloud Cybersecurity Certificate. In diesem Kurs lernen Sie weit verbreitete Frameworks für das Risikomanagement in der Cloud kennen. Dabei werden Sicherheitsbereiche, Compliance-Lebenszyklen und Branchenstandards wie HIPAA, NIST CSF und SOC behandelt. Sie erwerben Kenntnisse in den Bereichen Risikoidentifizierung, Implementierung von Sicherheitskontrollen, Compliance-Bewertung und Datenverwaltung. Außerdem sammeln Sie praktische Erfahrungen mit Google Cloud- und Multi-Cloud-Tools, die speziell für Risiko und Compliance entwickelt wurden. Und es werden Techniken zur Vorbereitung auf Bewerbungen und Vorstellungsgespräche vermittelt. So wird eine umfassende Grundlage geschaffen, um die komplexe Landschaft des Cloud-Risikomanagements zu verstehen und sich darin zurechtzufinden.
Dies ist der dritte von fünf Kursen des Google Cloud Cybersecurity Certificate. In diesem Kurs werden die Grundlagen der Identitätsverwaltung und Zugriffssteuerung in einer Cloud-Umgebung behandelt, einschließlich AAA-Elementen (Authentifizierung, Autorisierung und Auditing), Umgang mit Anmeldedaten und Zertifikatsverwaltung. Außerdem befassen Sie sich mit wichtigen Themen wie dem Umgang mit Bedrohungen und Sicherheitslücken, cloudnativen Prinzipien und Maßnahmen zum Datenschutz. Nach Abschluss des Kurses verfügen Sie über die Fähigkeiten und das Wissen, um cloudbasierte Ressourcen und sensible Unternehmensdaten zu schützen. Außerdem werden Sie sich weiterhin mit Karriereressourcen beschäftigen und Ihre Interviewtechniken verfeinern, um Sie auf den nächsten Schritt in Ihrer beruflichen Laufbahn vorzubereiten.
Dies ist der fünfte von fünf Kursen des Google Cloud Cybersecurity Certificate. In diesem Kurs kombinieren und wenden Sie in einem interaktiven Abschlussprojekt wichtige Konzepte an. Dazu gehören Cloud-Sicherheitsgrundsätze, Risikomanagement, Identifizierung von Sicherheitslücken, Vorfallmanagement und Krisenkommunikation. Außerdem bringen Sie Ihren Lebenslaufs auf den neuesten Stand und wenden alle neuen Techniken für Vorstellungsgespräche an, um sich auf Bewerbungen vorzubereiten.
Dies ist der vierte von fünf Kursen des Google Cloud Cybersecurity Certificate. In diesem Kurs geht es um Skills in den Bereichen Logging, Sicherheit und Monitoring von Benachrichtigungen sowie Methoden zur Abwehr von Angriffen. Teilnehmer lernen, wie sie Bedrohungsfeeds anpassen, mit Vorfällen umgehen, Krisenkommunikation betreiben, Ursachenanalysen durchführen, auf Vorfälle reagieren und nach einem Vorfall kommunizieren. Mithilfe von Google Cloud-Tools identifizieren sie Kompromittierungsindikatoren und bereiten sich auf die Aufrechterhaltung des Geschäftsbetriebs und die Notfallwiederherstellung vor. Neben diesen technischen Fähigkeiten arbeiten sie weiter an ihrem Lebenslauf und üben Vorstellungsgesprächstechniken.
This is the fourth of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll focus on developing capabilities in logging, security, and alert monitoring, along with techniques for mitigating attacks. You'll gain valuable knowledge in customizing threat feeds, managing incidents, handling crisis communications, conducting root cause analysis, and mastering incident response and post-event communications. Using Google Cloud tools, you'll learn to identify indicators of compromise and prepare for business continuity and disaster recovery. Alongside these technical skills, you'll continue updating your resume and practicing interview techniques.
This is the fifth of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll combine and apply key concepts such as cloud security principles, risk management, identifying vulnerabilities, incident management, and crisis communications in an interactive capstone project. Additionally, you'll finalize your resume updates and put to practice all the new interview techniques you've learned, preparing you to confidently apply for and interview for jobs in the field.
This is the third of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll explore the principles of identity management and access control within a cloud environment, covering key elements like AAA (Authentication, Authorization, and Auditing), credential handling, and certificate management. You'll also explore essential topics in threat and vulnerability management, cloud-native principles, and data protection measures. Upon completing this course, you will have acquired the skills and knowledge necessary to secure cloud-based resources and safeguard sensitive organizational information. Additionally, you'll continue to engage with career resources and hone your interview techniques, preparing you for the next step in your professional journey.
This is the second of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll explore widely-used cloud risk management frameworks, exploring security domains, compliance lifecycles, and industry standards such as HIPAA, NIST CSF, and SOC. You'll develop skills in risk identification, implementation of security controls, compliance evaluation, and data protection management. Additionally, you'll gain hands-on experience with Google Cloud and multi-cloud tools specific to risk and compliance. This course also incorporates job application and interview preparation techniques, offering a comprehensive foundation to understand and effectively navigate the complex landscape of cloud risk management.
This is the first of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll explore the essentials of cybersecurity, including the security lifecycle, digital transformation, and key cloud computing concepts. You’ll identify common tools used by entry-level cloud security analysts to automate tasks.
Die Kursreihe „Einführung in das Cloud-Computing von Google“ richtet sich an Personen mit geringen oder gar keinen Vorkenntnissen oder Erfahrungen im Bereich Cloud Computing. Sie bietet einen Überblick über Cloud-Grundlagen, Big Data, maschinelles Lernen und die Rolle von Google Cloud in diesem Bereich. Am Ende der Kursreihe können Teilnehmende diese Konzepte erläutern und einige praktische Fähigkeiten demonstrieren. Die Kurse sollten in folgender Reihenfolge absolviert werden: 1. Einführung in das Cloud-Computing von Google: Cloud-Computing-Grundlagen 2. Einführung in das Cloud-Computing von Google: Infrastruktur in Google Cloud 3. Einführung in das Cloud-Computing von Google: Netzwerke und Sicherheit in Google Cloud 4. Einführung in das Cloud-Computing von Google: Daten, ML und KI in Google Cloud Im letzten Kurs der Reihe geht es um verwaltete Big-Data-Dienste, maschinelles Lernen und dessen Vorzüge sowie die Möglichkeit, Ihre Google Cloud-Kompetenzen durch den Erwerb von Skill-L…
Die Kurse „Einführung in das Cloud-Computing von Google“ richten sich an Personen mit wenigen bis gar keinen Vorkenntnissen oder Erfahrungen im Bereich Cloud-Computing Sie bieten einen detaillierten Überblick über Cloud-Grundlagen, Big Data, maschinelles Lernen und die Rolle von Google Cloud in diesem Bereich. Am Ende der Kursreihe können Teilnehmende diese Konzepte erläutern und einige praktische Fähigkeiten demonstrieren. Die Kurse sollten in folgender Reihenfolge absolviert werden: 1. Einführung in das Cloud-Computing von Google: Cloud-Computing-Grundlagen 2. Einführung in das Cloud-Computing von Google: Infrastruktur in Google Cloud 3. Einführung in das Cloud-Computing von Google: Netzwerke und Sicherheit in Google Cloud 4. Einführung in das Cloud-Computing von Google: Daten, ML und KI in Google Cloud Dieser dritte Kurs behandelt Tools zur Cloud-Automatisierung- und -Verwaltung sowie den Aufbau sicherer Netzwerke.
Die Kursreihe „Einführung in das Cloud-Computing von Google“ richtet sich an Personen mit wenigen bis gar keinen Vorkenntnissen oder Erfahrungen im Bereich Cloud-Computing. Sie bietet einen detaillierten Überblick über Cloud-Grundlagen, Big Data, maschinelles Lernen und die Rolle von Google Cloud in diesem Bereich. Am Ende der Kursreihe können Teilnehmende diese Konzepte erläutern und einige praktische Fähigkeiten demonstrieren. Die Kurse sollten in folgender Reihenfolge absolviert werden: 1. Einführung in das Cloud-Computing von Google: Cloud-Computing-Grundlagen 2. Einführung in das Cloud-Computing von Google: Infrastruktur in Google Cloud 3. Einführung in das Cloud-Computing von Google: Netzwerke und Sicherheit in Google Cloud 4. Einführung in das Cloud-Computing von Google: Daten, ML und KI in Google Cloud
Die Kursreihe „Einführung in das Cloud-Computing von Google“ richtet sich an Personen mit geringen oder gar keinen Vorkenntnissen oder Erfahrungen im Bereich Cloud Computing. Sie bietet einen detaillierten Überblick über Cloud-Grundlagen, Big Data, maschinelles Lernen und die Rolle von Google Cloud in diesem Bereich. Am Ende der Kursreihe können Teilnehmende diese Konzepte erläutern und einige praktische Fähigkeiten demonstrieren. Die Kurse sollten in folgender Reihenfolge absolviert werden: 1. Einführung in das Cloud-Computing von Google: Cloud-Computing-Grundlagen 2. Einführung in das Cloud-Computing von Google: Infrastruktur in Google Cloud 3. Einführung in das Cloud-Computing von Google: Netzwerke und Sicherheit in Google Cloud 4. Einführung in das Cloud-Computing von Google: Daten, ML und KI in Google Cloud Diese Kursreihe bietet einen Überblick über Cloud-Computing, verschiedene Nutzungsmöglichkeiten von Google Cloud und verschiedene Computing-Optionen.
Earn a skill badge by completing the Introduction to Generative AI, Introduction to Large Language Models and Introduction to Responsible AI courses. By passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
In diesem Kurs erfahren Sie, wie Sie mithilfe von Deep Learning ein Modell zur Bilduntertitelung erstellen. Sie lernen die verschiedenen Komponenten eines solchen Modells wie den Encoder und Decoder und die Schritte zum Trainieren und Bewerten des Modells kennen. Nach Abschluss dieses Kurses haben Sie folgende Kompetenzen erworben: Erstellen eigener Modelle zur Bilduntertitelung und Verwenden der Modelle zum Generieren von Untertiteln
Dieser Kurs bietet eine Einführung in Vertex AI Studio, ein Tool für die Interaktion mit generativen KI-Modellen sowie das Prototyping von Geschäftsideen und ihre Umsetzung. Anhand eines eindrucksvollen Anwendungsfalls, ansprechender Lektionen und einer praktischen Übung lernen Sie den Lebenszyklus vom Prompt bis zum Produkt kennen und erfahren, wie Sie Vertex AI Studio für multimodale Gemini-Anwendungen, Prompt-Design, Prompt Engineering und Modellabstimmung einsetzen können. Ziel ist es, Ihnen aufzuzeigen, wie Sie das Potenzial von generativer KI in Ihren Projekten mit Vertex AI Studio ausschöpfen.
Dieser Kurs bietet eine Einführung in die Transformer-Architektur und das BERT-Modell (Bidirectional Encoder Representations from Transformers). Sie lernen die Hauptkomponenten der Transformer-Architektur wie den Self-Attention-Mechanismus kennen und erfahren, wie Sie diesen zum Erstellen des BERT-Modells verwenden. Darüber hinaus werden verschiedene Aufgaben behandelt, für die BERT genutzt werden kann, wie etwa Textklassifizierung, Question Answering und Natural-Language-Inferenz. Der gesamte Kurs dauert ungefähr 45 Minuten.
In diesem Kurs wird der Aufmerksamkeitsmechanismus vorgestellt. Dies ist ein leistungsstarkes Verfahren, das die Fokussierung neuronaler Netzwerke auf bestimmte Abschnitte einer Eingabesequenz ermöglicht. Sie erfahren, wie der Aufmerksamkeitsmechanismus funktioniert und wie Sie damit die Leistung verschiedener Machine Learning-Tasks wie maschinelle Übersetzungen, Zusammenfassungen von Texten und Question Answering verbessern können.
In diesem Einführungskurs im Microlearning-Format wird erklärt, was generative KI ist, wie sie genutzt wird und wie sie sich von herkömmlichen Methoden für Machine Learning unterscheidet. Darüber hinaus werden Tools von Google behandelt, mit denen Sie eigene Anwendungen basierend auf generativer KI entwickeln können.
This course, Encoder-Decoder Architecture - Locales, is intended for non-English learners. If you want to take this course in English, please enroll in Encoder-Decoder Architecture. This course gives you a synopsis of the encoder-decoder architecture, which is a powerful and prevalent machine learning architecture for sequence-to-sequence tasks such as machine translation, text summarization, and question answering. You learn about the main components of the encoder-decoder architecture and how to train and serve these models. In the corresponding lab walkthrough, you’ll code in TensorFlow a simple implementation of the encoder-decoder architecture for poetry generation from the beginning.
In diesem Kurs werden Diffusion-Modelle vorgestellt, eine Gruppe verschiedener Machine Learning-Modelle, die kürzlich einige vielversprechende Fortschritte im Bereich Bildgenerierung gemacht haben. Diffusion-Modelle basieren auf physikalischen Konzepten der Thermodynamik und sind in den letzten Jahren in der Forschung und Industrie sehr beliebt geworden. Dabei stützen sich Diffusion-Modelle auf viele innovative Modelle und Tools zur Bildgenerierung in Google Cloud. In diesem Kurs werden Ihnen die theoretischen Grundlagen der Diffusion-Modelle erläutert und wie Sie diese Modelle über Vertex AI trainieren und bereitstellen können.
In diesem Einführungskurs im Microlearning-Format wird erklärt, was verantwortungsbewusste Anwendung von KI bedeutet, warum sie wichtig ist und wie Google dies in seinen Produkten berücksichtigt. Darüber hinaus werden die 7 KI-Grundsätze von Google behandelt.
In diesem Einführungskurs im Microlearning-Format wird untersucht, was Large Language Models (LLM) sind, für welche Anwendungsfälle sie genutzt werden können und wie die LLM-Leistung durch Feinabstimmung von Prompts gesteigert werden kann. Darüber hinaus werden Tools von Google behandelt, die das Entwickeln eigener Anwendungen basierend auf generativer KI ermöglichen.
Brains? Check. Talent? Check. Growth mindset? We can help with that! It’s not just abilities and talent that bring success - but a growth mindset too. When you cultivate a growth mindset, you embrace obstacles, find opportunity in failure, and learn from mistakes. So whether you’re bootstrapping a startup or your personal career, come exercise your growth mindset muscles and explore a range of startup-focused tech. You’ll get hands-on experience with the tools people around the world use to get to the next stage of growth.
Mit dem Skill-Logo Infrastruktur mit Terraform in Google Cloud erstellen weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Grundsätze von Infrastruktur als Code (IaC) unter Verwendung von Terraform, Bereitstellen und Verwalten von Google Cloud-Ressourcen mit Terraform-Konfigurationen, effektives Statusmanagement (lokal und remote) und die Modularisierung von Terraform-Code für Wiederverwendbarkeit und Organisation.
Willkommen beim Kurs „Erste Schritte mit der Google Kubernetes Engine“. Sie interessieren sich für Kubernetes, eine Software-Ebene, die sich zwischen Ihren Anwendungen und der Hardwareinfrastruktur befindet? Dann sind Sie hier genau richtig! Die Google Kubernetes Engine bietet Ihnen Kubernetes als verwalteten Dienst in Google Cloud. In diesem Kurs lernen Sie die Grundlagen der Google Kubernetes Engine (GKE) kennen und erfahren, wie Sie Anwendungen containerisieren und in Google Cloud ausführen. Er beginnt mit einer Einführung in Google Cloud, gefolgt von einem Überblick über Container und Kubernetes, die Kubernetes-Architektur sowie Kubernetes-Vorgänge.
The hands-on labs in this Quest are structured to give experienced app developers hands-on practice with the state-of-the-art developing applications in Google Cloud. The topics align with the Google Cloud Certified Professional Cloud Developer Certification. These labs follow the sequence of activities needed to create and deploy an app in Google Cloud from beginning to end. Be aware that while practice with these labs will increase your skills and abilities, it is recommended that you also review the exam guide and other available preparation resources.
Big data, machine learning, and scientific data? It sounds like the perfect match. In this advanced-level quest, you will get hands-on practice with GCP services like Big Query, Dataproc, and Tensorflow by applying them to use cases that employ real-life, scientific data sets. By getting experience with tasks like earthquake data analysis and satellite image aggregation, Scientific Data Processing will expand your skill set in big data and machine learning so you can start tackling your own problems across a spectrum of scientific disciplines.
Cloud SQL is a fully managed database service that stands out from its peers due to high performance, seamless integration, and impressive scalability. In this quest you will receive hands-on practice with the basics of Cloud SQL and quickly progress to advanced features, which you will apply to production frameworks and application environments. From creating instances and querying data with SQL, to building Deployment Manager scripts and connecting Cloud SQL instances with applications run on GKE containers, this quest will give you the knowledge and experience needed so you can start integrating this service right away.
In this quest, you will learn about Google Cloud’s IoT Core service and its integration with other services like GCS, Dataprep, Stackdriver and Firestore. The labs in this quest use simulator code to mimic IOT devices and the learning here should empower you to implement the same streaming pipeline with real world IoT devices.
Blockchain and related technologies, such as distributed ledger and distributed apps, are becoming new value drivers and solution priorities in many industries. In this course you will gain hands-on experience with distributed ledger and the exploration of blockchain datasets in Google Cloud. It brings the research and solution work of Google's Allen Day into self-paced labs for you to run and learn directly. Since this course uses advanced SQL in BigQuery, a SQL-in-BigQuery refresher lab is at the start.
Looking to build or optimize your data warehouse? Learn best practices to Extract, Transform, and Load your data into Google Cloud with BigQuery. In this series of interactive labs you will create and optimize your own data warehouse using a variety of large-scale BigQuery public datasets. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
Google Cloud Application Programming Interfaces are the mechanism to interact with Google Cloud Services programmatically. This quest will give you hands-on practice with a variety of GCP APIs, which you will learn through working with Google’s APIs Explorer, a tool that allows you to browse APIs and run their methods interactively. By learning how to transfer data between Cloud Storage buckets, deploy Compute Engine instances, configure Dataproc clusters and much more, Exploring APIs will show you how powerful APIs are and why they are used almost exclusively by proficient GCP users. Enroll in this quest today.
In this introductory-level quest, you will learn the fundamentals of developing and deploying applications on the Google Cloud Platform. You will get hands-on experience with the Google App Engine framework by launching applications written in languages like Python, Ruby, and Java (just to name a few). You will see first-hand how straightforward and powerful GCP application frameworks are, and how easily they integrate with GCP database, data-loss prevention, and security services.
Mit dem Skill-Logo zum Kurs Daten für die Vorhersagemodellierung mit BigQuery ML vorbereiten weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Erstellen von Pipelines für die Datentransformation nach BigQuery mithilfe von Dataprep von Trifacta; Extrahieren, Transformieren und Laden (ETL) von Workflows mit Cloud Storage, Dataflow und BigQuery; und Erstellen von Machine-Learning-Modellen mithilfe von BigQuery ML.
This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.
Obtain a competitive advantage through DevOps. DevOps is an organizational and cultural movement that aims to increase software delivery velocity, improve service reliability, and build shared ownership among software stakeholders. In this course you will learn how to use Google Cloud to improve the speed, stability, availability, and security of your software delivery capability. DevOps Research and Assessment has joined Google Cloud. How does your team measure up? Take this five question multiple-choice quiz and find out!
Mit dem Skill-Logo DevOps-Workflows in Google Cloud implementieren weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Git-Repositories mit Cloud Source Repositories erstellen, Deployments in der Google Kubernetes Engine (GKE) starten, verwalten und skalieren sowie CI/CD-Pipelines zur Automatisierung von Container-Image-Builds und GKE-Deployments entwerfen.
Dieser Kurs eignet sich am besten für Personen im Technologie- oder Finanzbereich, die für die Verwaltung von Google Cloud-Kosten verantwortlich sind. Sie lernen, wie Rechnungskonten eingerichtet, Ressourcen organisiert und Zugriffsberechtigungen für die Abrechnung verwaltet werden. In den praxisorientierten Labs lernen Sie, wie Sie Rechnungen abrufen, Ihre Google Cloud-Kosten mit Abrechnungsberichten im Auge behalten, Ihre Abrechnungsdaten mithilfe von BigQuery oder Google Sheets analysieren und individuelle Abrechnungs-Dashboards mit Looker Studio erstellen können. Verweise auf Links in den Videos sind in folgendem Dokument abrufbar: Zusätzliche Ressourcen.
Mit dem Skill-Logo zum Kurs ML-Modelle mit BigQuery ML erstellen weisen Sie fortgeschrittene Kenntnisse in folgendem Bereich nach: Erstellen und Bewerten von Machine-Learning-Modellen mit BigQuery ML, um Datenvorhersagen zu treffen.
Sie möchten Machine-Learning-Modelle mithilfe von SQL in Minuten statt in Stunden erstellen? BigQuery ML sorgt für eine breite Nutzung von Machine Learning, indem es Datenanalysten ermöglicht, ML-Modelle zu erstellen, zu trainieren und zu bewerten sowie mit den Modellen und vorhandenen SQL-Tools und ‑Fähigkeiten Vorhersagen zu treffen. In dieser Lab-Reihe experimentieren Sie mit verschiedenen Modelltypen und erfahren, was für ein gutes Modell notwendig ist.
Erhalten Sie ein Skill-Logo, indem Sie den Kurs Cloud-Architektur: Entwerfen, umsetzen und verwalten abschließen. Dabei können Sie Fähigkeiten nachweisen, die für folgende Aufgaben nötig sind: eine öffentlich zugängliche Website mit Apache-Webservern bereitstellen, eine Compute Engine-VM mithilfe von Startscripts konfigurieren, sicheres RDP durch Nutzung von Firewallregeln und eines Windows-Bastion Hosts konfigurieren, ein Docker-Image in einem Kubernetes-Cluster bereitstellen und anschließend aktualisieren sowie eine Cloud SQL-Instanz erstellen und eine MySQL-Datenbank importieren. Diese Aufgabenreihe bietet eine gute Grundlage für bestimmte Themen, die Teil der Zertifizierungsprüfung zum Google Cloud Certified Professional Cloud Architect sind.
Networking is a principle theme of cloud computing. It’s the underlying structure of Google Cloud, and it’s what connects all your resources and services to one another. This course will cover essential Google Cloud networking services and will give you hands-on practice with specialized tools for developing mature networks. From learning the ins-and-outs of VPCs, to creating enterprise-grade load balancers, Automate Deployment and Manage Traffic on a Google Cloud Network will give you the practical experience needed so you can start building robust networks right away.
Sicherheit hat bei Google Cloud-Diensten oberste Priorität. Google Cloud verfügt daher über spezielle Tools, die beim Thema Schutz und Identität für Sicherheit in Ihren Projekten sorgen. In diesem Kurs für Einsteiger sammeln Sie praktische Erfahrungen mit Google Cloud Identity and Access Management (IAM), einer erprobten Lösung für die Verwaltung von Nutzer- und VM-Konten. Außerdem erhalten Sie Einblicke in die Netzwerksicherheit, indem Sie Virtual Private Clouds (VPCs) und virtuelle private Netzwerke (VPNs) bereitstellen. Darüber hinaus lernen Sie, welche Tools Sie zum Schutz vor Sicherheitsbedrohungen und Datenverlusten einsetzen können.
Kubernetes ist das meistgenutzte System zur Orchestrierung von Containern. Die Google Kubernetes Engine wurde speziell für die Unterstützung verwalteter Kubernetes-Deployments in Google Cloud entwickelt. In diesem Kurs für Fortgeschrittene erfahren Sie, wie Sie Docker-Images und ‑Container konfigurieren und vollwertige Kubernetes Engine-Anwendungen bereitstellen. Sie erlernen die praktischen Fertigkeiten, die für die Einbindung der Containerorchestrierung in den eigenen Workflow erforderlich sind. Wenn Sie Ihre Fähigkeiten und Ihr Wissen unter Beweis stellen möchten, können Sie ein Challenge-Lab nach Abschluss des Kurses Kubernetes-Anwendungen in Google Cloud bereitstellen absolvieren, um ein exklusives digitales Google Cloud-Logo zu erhalten.
Dieser Kurs für Einsteiger unterscheidet sich von anderen Kursangeboten. Die Labs sind so gewählt, dass sie IT-Profis praktische Kenntnisse zu Themen und Diensten vermitteln, die Bestandteil der Zertifizierungsprüfung zum Google Cloud Certified Associate Cloud Engineer sind. Die Labs des Kurses umfassen Themen wie IAM, Networking und Bereitstellung in der Kubernetes Engine, bei denen Sie Ihr Wissen über Google Cloud unter Beweis stellen können. Mithilfe der Übungen im Rahmen dieser Labs können Sie zwar Ihre Kenntnisse und Fähigkeiten erweitern, Sie sollten sich jedoch auch den Prüfungsleitfaden und andere verfügbare Vorbereitungsressourcen ansehen.
Mit dem Skill-Logo zum Kurs Website in Google Cloud erstellen weisen Sie Grundkenntnisse nach. Dieser Kurs basiert auf der Videoreihe Get Cooking in Cloud und behandelt folgende Themen:Website in Cloud Run bereitstellenWebanwendung in Compute Engine hostenWebsite in der Google Kubernetes Engine erstellen, bereitstellen und skalierenVon einer monolithischen Anwendung zu einer Microservices-Architektur mit Cloud Build migrieren
In this quest you will learn about the four Google Cloud website architectures available to ensure that your website is available and scalable. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, finish the additional challenge lab at the end of this Build a Website on Google Cloud to receive an exclusive Google Cloud digital badge. This quest is based on the video series Get Cooking in Cloud.
Cloud Logging is a fully managed service that performs at scale. It can ingest application and system log data from thousands of VMs and, even better, analyze all that log data in real time. In this fundamental-level Quest, you learn how to store, search, analyze, monitor, and alert on log data and events from Google Cloud. The labs in the Quest give you hands-on practice using Cloud Logging to maximize your learning experience and provide insight on how you can use Cloud Logging to your own Google Cloud environment.
This fundamental-level quest is unique amongst the other quest offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Cloud Architect Certification. From IAM, to networking, to Kubernetes engine deployment, this quest is composed of specific labs that will put your Google Cloud knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, we recommend that you also review the exam guide and other available preparation resources.
Earn a skill badge by completing the Build Interactive Apps with Google Assistant quest, where you will learn how to build Google Assistant applications, including how to: create an Actions project, integrate Dialogflow with an Actions project, test your application with Actions simulator, build an Assistant application with flash cards template, integrate customer MP3 files with your Assistant application, add Cloud Translation API to your Assistant application, and use APIs and integrate them into your applications. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge quest, and final assessment challenge lab, to receive a digital badge that you can share with your network.
Sichern Sie sich das Skill-Logo für Fortgeschrittene, indem Sie den Kurs APIs für Machine Learning in Google Cloud verwenden abschließen – hier lernen Sie die grundlegenden Funktionen der folgenden Machine-Learning- und KI-Technologien kennen: Cloud Vision API, Cloud Translation API und Cloud Natural Language API.
Mit dem Skill-Logo zum Kurs Informationen aus BigQuery-Daten ableiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Schreiben von SQL-Abfragen, Abfragen öffentlicher Tabellen, Laden von Beispieldaten in BigQuery, Beheben häufig auftretender Syntaxfehler mithilfe der Abfragevalidierung in BigQuery und Erstellen von Berichten in Looker Studio durch Herstellen einer Verbindung zu BigQuery-Daten.
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
It's no secret that machine learning is one of the fastest growing fields in tech, and Google Cloud has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning APIs by taking labs like Detect Labels, Faces, and Landmarks in Images with the Cloud Vision API. Looking for a hands-on challenge lab to demonstrate your skills and validate your knowledge? Enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
Mit dem Skill-Logo zum Kurs Grundlegende Sicherheitsfunktionen in Google Cloud implementieren weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Erstellen und Zuweisen von Rollen mit Identity and Access Management (IAM); Erstellen und Verwalten von Dienstkonten; Herstellen einer privaten Verbindung zwischen Virtual Private Cloud-Netzwerken (VPC); Beschränken des Anwendungszugriffs mithilfe von Identity-Aware Proxy; Verwalten von Schlüsseln und verschlüsselten Daten mit Cloud Key Management Service (KMS); und Erstellen eines privaten Kubernetes-Clusters.
This introductory-level quest shows application developers how the Google Cloud ecosystem could help them build secure, scalable, and intelligent cloud native applications. You learn how to develop and scale applications without setting up infrastructure, run data analytics, gain insights from data, and develop with pre-trained ML APIs to leverage machine learning even if you are not a Machine Learning expert. You will also experience seamless integration between various Google services and APIs to create intelligent apps.
Sichern Sie sich ein Skill-Logo, indem Sie den Kurs Geschütztes Google Cloud-Netzwerk erstellen abschließen. Dabei lernen Sie verschiedene netzwerkbezogene Ressourcen kennen, mit denen Sie Ihre Anwendungen in Google Cloud erstellen, skalieren und schützen können.
Erhalten Sie ein Skill-Logo, indem Sie den Kurs Google Cloud-Netzwerk entwickeln abschließen. Dabei wird anhand verschiedener Aufgaben behandelt, wie Sie Anwendungen bereitstellen und beobachten, darunter: IAM-Rollen prüfen, den Zugriff auf Projekte ermöglichen/entfernen, VPC-Netzwerke erstellen, Compute Engine-VMs bereitstellen und beobachten, SQL-Abfragen schreiben, VMs in der Compute Engine bereitstellen und beobachten sowie Anwendungen mithilfe von Kubernetes und mehreren Deploymentmodellen bereitstellen.
Erhalten Sie ein Skill-Logo, indem Sie den Kurs „Umgebung für die Anwendungsentwicklung in Google Cloud einrichten“ abschließen. Dabei lernen Sie, wie Sie eine speicherorientierte Cloud-Infrastruktur mithilfe der grundlegenden Funktionen der folgenden Technologien erstellen und verbinden: Cloud Storage, Identity and Access Management, Cloud Functions und Pub/Sub.
With Google Assistant part of over a billion consumer devices, this quest teaches you how to build practical Google Assistant applications integrated with Google Cloud services via APIs. Example apps will use the Dialogflow conversational suite and the Actions and Cloud Functions frameworks. You will build 5 different applications that explore useful and fun tools you can extend on your own. No hardware required! These labs use the cloud-based Google Assistant simulator environment for developing and testing, but if you do have your own device, such as a Google Home or a Google Hub, additional instructions are provided on how to deploy your apps to your own hardware.
Wenn Sie als Einsteiger im Bereich Cloudentwicklung nach praktischen Übungen suchen, die über reine Google Cloud-Grundlagen hinausgehen, ist dieser Kurs genau das Richtige für Sie. Sie sammeln praktische Erfahrungen in Labs rund um Cloud Storage und andere wichtige Anwendungsdienste wie Cloud Monitoring und Cloud Functions. Dabei bauen Sie Ihre Fähigkeiten aus, um sie bei unterschiedlichen Google Cloud-Initiativen einsetzen zu können.
In diesem Einführungskurs erhalten Sie praktische Fertigkeiten im Umgang mit den grundlegenden Tools und Services der Google Cloud. Ihnen werden optionale Videos bereitgestellt, in denen Sie sich weitergehend über die in den Labs behandelten Konzepte informieren können, so oft Sie möchten. „Google Cloud Essentials“ ist ein empfohlener erster Kurs für Google Cloud-Lernende. Selbst wenn Sie vor diesem Kurs wenig bis gar nichts über die Cloud gewusst haben, verfügen Sie danach über praktische Erfahrungen, die Sie in Ihrem ersten Google Cloud-Projekt anwenden können. Vom Schreiben von Cloud Shell- Befehlen und dem Bereitstellen Ihrer ersten virtuellen Maschine bis hin zum Ausführen von Anwendungen auf Kubernetes Engine oder mit Load-Balancing – Google Cloud Essentials ist eine erstklassige Einführung in die grundlegenden Funktionen der Plattform.
Machine Learning gehört zu den am schnellsten wachsenden Technologiefeldern – und Google Cloud hat zu dessen Weiterentwicklung maßgeblich beigetragen. Dank zahlreicher APIs bietet Google Cloud ein Tool für nahezu jede Aufgabe im Bereich des maschinellen Lernens. In diesem Kurs für Einsteiger können Sie praktische Erfahrungen mit Machine Learning hinsichtlich der Sprachverarbeitung sammeln. Sie absolvieren Labs, in denen Sie Entitäten aus Text extrahieren, Sentiment- und Syntaxanalysen durchführen und die Speech-to-Text API für Transkriptionen verwenden.
Big Data, Machine Learning und künstliche Intelligenz sind heutzutage sehr wichtige Themen. Diese Technologiefelder bringen jedoch sehr spezielle Anforderungen mit sich und es ist schwierig, einführende Materialien dafür zu finden. Google Cloud bietet nutzerfreundliche Dienste in diesen Bereichen an, die in diesem Kurs für Einsteiger behandelt werden. Verschaffen Sie sich Einblicke in die Nutzung von Tools wie BigQuery, der Cloud Speech API und Video Intelligence.
Mit dem Skill-Logo Kubernetes-Anwendungen in Google Cloud bereitstellen weisen Sie Kenntnisse in folgenden Bereichen nach: Konfigurieren und Erstellen von Docker-Container-Images, Erstellen und Verwalten von Google Kubernetes Engine-Clustern, Verwenden von kubectl für eine effiziente Clusterverwaltung und Bereitstellen von Kubernetes-Anwendungen mit leistungsfähigen Continuous Delivery-Abläufen.
Mit dem Skill-Logo zum Kurs Daten für ML-APIs in Google Cloud vorbereiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bereinigen von Daten mit Dataprep von Trifacta, Ausführen von Datenpipelines in Dataflow, Erstellen von Clustern und Ausführen von Apache Spark-Jobs in Dataproc sowie Aufrufen von ML-APIs, einschließlich der Cloud Natural Language API, Cloud Speech-to-Text API und Video Intelligence API.
Mit dem Skill-Logo zum Kurs Cloud Load Balancing in der Compute Engine implementieren weisen Sie Kenntnisse in folgenden Bereichen nach: virtuelle Maschinen in der Compute Engine erstellen und bereitstellen und Netzwerk- und Application Load Balancer konfigurieren.