Jahid Hasan
Membro dal giorno 2025
Campionato Argento
5780 punti
Membro dal giorno 2025
Questo corso ti insegna come creare un modello per le didascalie delle immagini utilizzando il deep learning. Scoprirai i diversi componenti di un modello per le didascalie delle immagini, come l'encoder e il decoder, e imparerai ad addestrare e valutare il tuo modello. Alla fine di questo corso, sarai in grado di creare modelli personali per le didascalie delle immagini e utilizzarli per generare didascalie per le immagini.
Questo corso ti introduce all'architettura Transformer e al modello BERT (Bidirectional Encoder Representations from Transformers). Scopri i componenti principali dell'architettura Transformer, come il meccanismo di auto-attenzione, e come viene utilizzata per creare il modello BERT. Imparerai anche le diverse attività per le quali può essere utilizzato il modello BERT, come la classificazione del testo, la risposta alle domande e l'inferenza del linguaggio naturale. Si stima che il completamento di questo corso richieda circa 45 minuti.
Questo corso ti introdurrà al meccanismo di attenzione, una potente tecnica che consente alle reti neurali di concentrarsi su parti specifiche di una sequenza di input. Imparerai come funziona l'attenzione e come può essere utilizzata per migliorare le prestazioni di molte attività di machine learning, come la traduzione automatica, il compendio di testi e la risposta alle domande.
Questo corso ti offre un riepilogo dell'architettura encoder-decoder, che è un'architettura di machine learning potente e diffusa per attività da sequenza a sequenza come traduzione automatica, riassunto del testo e risposta alle domande. Apprenderai i componenti principali dell'architettura encoder-decoder e come addestrare e fornire questi modelli. Nella procedura dettagliata del lab corrispondente, implementerai in TensorFlow dall'inizio un semplice codice dell'architettura encoder-decoder per la generazione di poesie da zero.
Questo corso introduce i modelli di diffusione, una famiglia di modelli di machine learning che recentemente si sono dimostrati promettenti nello spazio di generazione delle immagini. I modelli di diffusione traggono ispirazione dalla fisica, in particolare dalla termodinamica. Negli ultimi anni, i modelli di diffusione sono diventati popolari sia nella ricerca che nella produzione. I modelli di diffusione sono alla base di molti modelli e strumenti di generazione di immagini all'avanguardia su Google Cloud. Questo corso ti introduce alla teoria alla base dei modelli di diffusione e a come addestrarli ed eseguirne il deployment su Vertex AI.
Dal momento che l'uso dell'intelligenza artificiale e del machine learning nelle aziende continua a crescere, cresce anche l'importanza di realizzarli in modo responsabile. Molti sono scoraggiati dal fatto che parlare di IA responsabile può essere più facile che metterla in pratica. Se vuoi imparare come operativizzare l'IA responsabile nella tua organizzazione, questo corso fa per te. In questo corso scoprirai come Google Cloud ci riesce attualmente, oltre alle best practice e alle lezioni apprese, per fungere da framework per costruire il tuo approccio all'IA responsabile.
Questo è un corso di microlearning di livello introduttivo volto a spiegare cos'è l'IA responsabile, perché è importante e in che modo Google implementa l'IA responsabile nei propri prodotti. Introduce anche i 7 principi dell'IA di Google.
Questo è un corso di microlearning di livello introduttivo che esplora cosa sono i modelli linguistici di grandi dimensioni (LLM), i casi d'uso in cui possono essere utilizzati e come è possibile utilizzare l'ottimizzazione dei prompt per migliorare le prestazioni dei modelli LLM. Descrive inoltre gli strumenti Google per aiutarti a sviluppare le tue app Gen AI.
Questo è un corso di microlearning di livello introduttivo volto a spiegare cos'è l'AI generativa, come viene utilizzata e in che modo differisce dai tradizionali metodi di machine learning. Descrive inoltre gli strumenti Google che possono aiutarti a sviluppare le tue app Gen AI.
This video covers how to build a personalized "Work with Me" agent using Gemini Gems, which helps streamline foundational feedback and makes your meetings more strategic and efficient.
This video covers how to create a 'project notebook' in NotebookLM by adding all relevant sources to build a central, searchable knowledge hub for your team.
This video covers how to use NotebookLM for common marketing tasks like analyzing customer feedback, conducting market research, and generating content ideas.
This video covers how to use the Video Overviews feature in NotebookLM to automatically generate a short explainer video based on your source documents.
This video covers how to use the 'Discover Sources' feature in NotebookLM to find and import relevant web-based sources directly into your research project.
This video covers how to use the Mind Maps feature in NotebookLM to automatically create a visual representation of your sources, helping you understand connections and key concepts.
This video covers how to use NotebookLM as a personal research assistant by adding sources, asking questions, and generating new content formats based on your documents.
This video covers how to use Gemini in Gmail to draft new emails, refine their tone, respond with context from Drive files, and use smart reply suggestions.
This video covers how to use the 'Help me create' feature in Google Docs to generate a complete, formatted document by referencing content from other files in your Drive.
This video covers five key ways to use Google's AI tools, including Gemini in Workspace, the Gemini app, and NotebookLM, to enhance your daily productivity.
This video covers how to use Gemini in Gmail to summarize emails, find information, and draft replies, helping you manage your inbox more efficiently.
This video covers how to use Gemini in Slides to automatically generate meeting recaps and draft follow-up emails, which can streamline your post-meeting workflow and save you time.
This video covers how you can leverage Gemini's advanced AI capabilities within Google Sheets to effortlessly pull data and generate insights in minutes, all without the need for any technical or coding background.
This video will cover how to leverage Gemini Gems to create authentic social media posts in your leader's unique voice. Learn to overcome the challenge of scaling executive social presence by training a Gem with writing samples and clear instructions. Discover how to generate engaging posts quickly, saving time while amplifying thought leadership and ensuring authenticity.
This video covers how you can create your own Brevity Gem to summarize and transform messy notes or long documents into clear, concise, executive-ready summaries.
This video covers how to use Gemini and Apps Script to automate manual tasks across Google Workspace. You'll learn to prompt Gemini to generate Apps Script code that automatically drafts email reminders in Google Sheets for tasks not marked 'Complete.' Automate your workflow with little to no technical expertise, freeing up time for more important work and eliminating manual follow-ups.
This video covers how you can leverage Notebook LM to "eat the frog" on your to-do list by automating complex tasks like summarizing legislation and mapping services, saving you hours of work.
This video covers how to eliminate tedious manual data entry using Gemini. Learn how to take a picture or screenshot of data (from PDFs, paper, or images) and prompt Gemini to instantly convert it into a structured Google Sheet. Discover this simple hack to save countless hours transcribing data, turning Gemini into your personal data entry assistant. Just snap, prompt, and export!
AI Boost Bites is a video series designed to help you leverage Google's AI tools in your daily work. Each episode, under 10 minutes, features a quick video demonstrating a real-world AI use case or topic. After the video, you'll get a challenge to apply what you've learned. It's an easy, interactive way to boost your AI skills and improve your productivity.
This video will cover how to use NotebookLM to gather and analyze publicly available information, combine it with internal documents, and extract key competitive insights.
This video covers how to personalize your Gemini results in Google Workspace. Learn to incorporate documents and research papers directly into your prompts using the "@" symbol to get more targeted and relevant AI output tailored to your needs.
This video covers how you can use Gemini to summarize long documents in Google Workspace, so you can quickly get the information you need and save time. You'll learn how to use Gemini to summarize entire documents or just selected text, as well as how to use Gemini in Drive to summarize across multiple files.
This video covers prompt engineering fundamentals for effective AI communication. Learn a simple framework (Persona, Task, Context, Format) to craft clear prompts, getting better, faster results from Gemini in Google Workspace. Discover how to use natural language, be specific, and iterate for optimal AI assistance.
This video will cover how you can leverage Gemini's advanced AI capabilities in Google Docs to brainstorm ideas, draft various marketing content, and collaborate with your team.
This video covers how NotebookLM can revolutionize customer insight gathering from call or chat transcripts. You'll learn to upload PDF transcripts of hundreds of conversations (even multilingual ones!) and quickly extract key themes, trending topics, and actionable insights without listening for hours. Discover how to save findings, share notebooks, and even generate interactive podcast summaries of your data.
This video covers how to create your own Gemini Gems, advanced AI capabilities that can automate repetitive tasks and supercharge your productivity.