Mit dem Skill-Logo zum Kurs Datenerfassung mit Document AI automatisieren weisen Sie Grundkenntnisse nach. In diesem Kurs lernen Sie, wie Sie mit Document AI Daten extrahieren, verarbeiten und erheben.
Mit dem Skill-Logo zum Kurs Monitoring in Google Cloud weisen Sie Grundkenntnisse in den folgenden Bereichen nach: Verwendung von Cloud Monitoring-Tools zur Überwachung von Ressourcen in Google Cloud.
Mit dem Skill-Logo Prompt-Design mit Vertex AI weisen Sie Grundkenntnisse in folgenden Bereichen nach: Prompt Engineering, Bildanalyse und multimodale generative Techniken in Vertex AI. Entdecken Sie, wie Sie wirksame Prompts erstellen, auf generativer KI basierende Ausgaben steuern und Gemini-Modelle in Marketing-Szenarien aus der Praxis anwenden.
In diesem Kurs wird eine Lösung für Retrieval-Augmented Generation (RAG) in BigQuery vorgestellt, die KI-Halluzinationen minimiert. Sie lernen einen RAG-Workflow kennen, der die Erstellung von Einbettungen, die Suche in einem Vektorraum und die Generierung verbesserter Antworten umfasst. Darüber hinaus werden die konzeptionellen Gründe für diese Schritte und ihre praktische Umsetzung mit BigQuery erklärt. Am Ende des Kurses werden Sie in der Lage sein, eine RAG-Pipeline mithilfe von BigQuery und generativen KI-Modellen wie Gemini zu erstellen und Modelle einzubetten, um KI-Halluzinationen zu verhindern.
Künstliche Intelligenz (KI) bietet revolutionäre Möglichkeiten, geht aber auch mit neuen Sicherheitsherausforderungen einher. In diesem Kurs lernen Führungskräfte im Bereich Sicherheit und Datenschutz Strategien für den sicheren Umgang mit KI in ihren Unternehmen kennen. Es wird ein Framework für das proaktive Erkennen und Mindern KI-spezifischer Risiken, den Schutz sensibler Daten, das Einhalten rechtlicher Vorgaben und den Aufbau einer robusten KI-Infrastruktur vorgestellt. Anhand von Anwendungsfällen aus vier verschiedenen Branchen wird gezeigt, wie sich diese Strategien auf reale Szenarien anwenden lassen.
In diesem Kurs werden die wichtigsten Sicherheitsfunktionen von Model Armor vorgestellt. Außerdem lernen Sie, wie Sie den Dienst nutzen können. Sie erfahren mehr über die Sicherheitsrisiken, die mit LLMs verbunden sind, und wie Model Armor Ihre KI-Anwendungen schützt.
This course will teach you how to build conversational experiences for Conversational Agents using Generative Playbooks. You'll start with an introduction to playbooks and learn how to set up your first one. You'll also learn about the importance of testing, as well as key production considerations like quota limits and integration. The course concludes with a case study that shows how to use playbooks for generative steering.
Build AI agents that can leverage enterprise databases using the MCP Toolbox for Databases. You will define secure database interaction tools, and implement intelligent querying capabilities (leveraging vector embeddings, structured queries).
Unlock the power of generative AI to create intelligent, automated agents. After completing this course, you'll be equipped to develop a data store agent that can instantly answer complex questions by automatically extracting and synthesizing information from your websites, documents, or structured data. Say goodbye to static FAQs—your new agent will provide dynamic, accurate answers and even surface the original source URLs, all with a simple and rapid setup.
Mit dem Skill-Logo „Praxisorientierte KI-Anwendungen mit Gemini und Imagen entwickeln“ weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bilderkennung, Natural Language Processing, Bildgenerierung mit den leistungsstarken Gemini- und Imagen-Modellen von Google sowie Bereitstellen von Anwendungen auf der Vertex AI-Plattform.
Mit dem Skill-Logo zum Kurs ML-Modelle mit BigQuery ML erstellen weisen Sie fortgeschrittene Kenntnisse in folgendem Bereich nach: Erstellen und Bewerten von Machine-Learning-Modellen mit BigQuery ML, um Datenvorhersagen zu treffen.
Mit dem Skill-Logo zum Kurs Generative KI-Anwendungen mit Gemini und Streamlit entwickeln weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Texterstellung, Anwendung von Funktionsaufrufen mit dem Python SDK und der Gemini API und Bereitstellung einer Streamlit-Anwendung mit Cloud Run. Dabei lernen Sie, wie Sie mithilfe von Gemini und entsprechenden Prompts Text erstellen, Cloud Shell zum Testen und Iterieren einer Streamlit-Anwendung nutzen und diese Anwendung dann als Docker-Container zur Bereitstellung in Cloud Run verpacken.
Mit dem Skill-Logo zum Kurs Gemini-Modellfunktionen verbessern weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Nutzung erweiterter Funktionen von Gemini-Modellen, darunter Codegenerierung und ‑ausführung, Fundierung, kontrollierte Inhaltserstellung, und die Erstellung synthetischer Daten, um leistungsstärkere und komplexere KI-Anwendungen zu entwickeln.
Mit dem Skill-Logo Generative KI mit der Gemini API in Vertex AI nutzen weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Textgenerierung, Bild- und Videoanalyse für eine verbesserte Erstellung von Inhalten und die Verwendung von Funktionsaufrufen in der Gemini API. Sie erfahren, wie Sie ausgefeilte Gemini-Techniken einsetzen, multimodale Inhalte erstellen und in KI-Projekten noch mehr Möglichkeiten nutzen können.
Schließen Sie den Kurs Cloud Run Functions: 3 Möglichkeiten ab und erwerben Sie ein Skill-Logo für Grundkenntnisse. Sie lernen, wie Sie Cloud Run Functions in der Google Cloud Console und über die Befehlszeile verwenden.
Mit dem Skill-Logo Dienstkonten und IAM-Rollen für Google Cloud konfigurieren weisen Sie Grundkenntnisse nach. In diesem Kurs lernen Sie Dienstkonten und benutzerdefinierte Rollen kennen und erfahren, wie Sie mit gcloud Berechtigungen festlegen.
Complete the advanced Deploy Multi-Agent Architectures skill badge to demonstrate skills in the following: building multi-agent systems with ADK, connecting agents with the Agent-to-Agent (A2A) protocol, integrating external tools using the Model Context Protocol (MCP), and deploying a complete multi-agent solution to Agent Engine.
Mit dem Skill-Logo zum Kurs Daten für die Vorhersagemodellierung mit BigQuery ML vorbereiten weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Erstellen von Pipelines für die Datentransformation nach BigQuery mithilfe von Dataprep von Trifacta; Extrahieren, Transformieren und Laden (ETL) von Workflows mit Cloud Storage, Dataflow und BigQuery; und Erstellen von Machine-Learning-Modellen mithilfe von BigQuery ML.
Mit dem Skill-Logo Multimodale Vektorsuche mit BigQuery implementieren weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: mit Gemini in BigQuery SQL generieren und debuggen, Sentimentanalysen durchführen, Text zusammenfassen und Keywords ermitteln, Einbettungen generieren, eine RAG-Pipeline (Retrieval-Augmented Generation) erstellen und eine multimodale Vektorsuche implementieren.
Mit dem Skill-Logo zum Kurs Rich-Dokumente mit Gemini Multimodal und Multimodal RAG untersuchen weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Verwenden von multimodalen Prompts, um Informationen aus Text- und Bilddaten zu gewinnen; Erstellen einer Videobeschreibung und Abrufen von zusätzlichen, über das Video hinausgehenden Informationen unter Verwendung von Multimodalität mit Gemini; Erstellen von Metadaten von Dokumenten mit Text und Bildern; Ermitteln aller relevanten Textabschnitte und Drucken von Zitationen durch Nutzung von multimodaler Retrieval-Augmented Generation (RAG) mit Gemini.
Schließen Sie den Kurs „Einstieg in die Anwendungsentwicklung mit Gemini Code Assist“ ab und sichern Sie sich ein Skill-Logo. Dabei lernen Sie, wie Sie die Leistungsfähigkeit des KI-Coding-Assistenten von Google optimal nutzen.
Mit dem Skill-Logo zum Kurs Mit Security Command Center gegen Bedrohungen und Sicherheitslücken vorgehen weisen Sie fortgeschrittene Kenntnisse in den folgenden Bereichen nach: Bedrohungen für Umgebungen verhindern und bewältigen, Sicherheitslücken in Anwendungen erkennen und beseitigen sowie auf Sicherheitsanomalien reagieren.
This video covers how to use Gemini and Apps Script to automate manual tasks across Google Workspace. You'll learn to prompt Gemini to generate Apps Script code that automatically drafts email reminders in Google Sheets for tasks not marked 'Complete.' Automate your workflow with little to no technical expertise, freeing up time for more important work and eliminating manual follow-ups.
Mit dem Skill-Logo Monitoring und Logging mit Google Cloud Observability weisen Sie Grundkenntnisse in folgenden Bereichen nach: Überwachen virtueller Maschinen in der Compute Engine, Einsetzen von Cloud Monitoring für Verwaltung mehrerer Projekte, Erweitern von Monitoring- und Logging-Funktionen zur Nutzung in Cloud Functions, Erstellen und Senden von benutzerdefinierten Anwendungsmesswerten und Konfigurieren von Cloud Monitoring-Benachrichtigungen auf der Grundlage benutzerdefinierter Messwerte.
Mit dem Skill-Logo zum Fortgeschrittenen-Kurs Prädiktive Datenanalyse in BigQuery durchführen weisen Sie Kenntnisse in folgenden Bereichen nach: Datasets in BigQuery erstellen durch Importieren von CSV- und JSON-Dateien; Leistungsfähigkeit von BigQuery mit ausgefeilten SQL-Analysekonzepten nutzen, einschließlich BigQuery ML zum Trainieren eines Modells für Torvorhersagen auf Grundlage von Fußballereignisdaten und zum Bewerten der Besonderheit von WM-Toren.
Mit dem Skill-Logo zum Kurs Daten für ML-APIs in Google Cloud vorbereiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bereinigen von Daten mit Dataprep von Trifacta, Ausführen von Datenpipelines in Dataflow, Erstellen von Clustern und Ausführen von Apache Spark-Jobs in Dataproc sowie Aufrufen von ML-APIs, einschließlich der Cloud Natural Language API, Cloud Speech-to-Text API und Video Intelligence API.
Sichern Sie sich ein Skill-Logo, indem Sie die Aufgabenreihe Google Cloud Compute: Grundlagen abschließen. Dabei lernen Sie, wie Sie Compute Engine bei der Arbeit mit virtuellen Maschinen (VMs), nichtflüchtigen Speichern und Webservern nutzen.
Mit dem Skill-Logo für den Einsteigerkurs APIs für die Arbeit mit Cloud Storage verwenden weisen Sie Kenntnisse in folgenden Bereichen nach: APIs für die Arbeit mit Cloud Storage-Ressourcen verwenden, einschließlich der Cloud Storage API.
Sichern Sie sich das Skill-Logo für Fortgeschrittene, indem Sie den Kurs APIs für Machine Learning in Google Cloud verwenden abschließen – hier lernen Sie die grundlegenden Funktionen der folgenden Machine-Learning- und KI-Technologien kennen: Cloud Vision API, Cloud Translation API und Cloud Natural Language API.
Erhalten Sie ein Skill-Logo, indem Sie den Kurs „Umgebung für die Anwendungsentwicklung in Google Cloud einrichten“ abschließen. Dabei lernen Sie, wie Sie eine speicherorientierte Cloud-Infrastruktur mithilfe der grundlegenden Funktionen der folgenden Technologien erstellen und verbinden: Cloud Storage, Identity and Access Management, Cloud Functions und Pub/Sub.
Mit dem Skill-Logo DevOps-Workflows in Google Cloud implementieren weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Git-Repositories mit Cloud Source Repositories erstellen, Deployments in der Google Kubernetes Engine (GKE) starten, verwalten und skalieren sowie CI/CD-Pipelines zur Automatisierung von Container-Image-Builds und GKE-Deployments entwerfen.
Dieser Kurs eignet sich am besten für Personen im Technologie- oder Finanzbereich, die für die Verwaltung von Google Cloud-Kosten verantwortlich sind. Sie lernen, wie Rechnungskonten eingerichtet, Ressourcen organisiert und Zugriffsberechtigungen für die Abrechnung verwaltet werden. In den praxisorientierten Labs lernen Sie, wie Sie Rechnungen abrufen, Ihre Google Cloud-Kosten mit Abrechnungsberichten im Auge behalten, Ihre Abrechnungsdaten mithilfe von BigQuery oder Google Sheets analysieren und individuelle Abrechnungs-Dashboards mit Looker Studio erstellen können. Verweise auf Links in den Videos sind in folgendem Dokument abrufbar: Zusätzliche Ressourcen.
For everyone using Google Cloud Platform for the first time, getting familar with gcloud, Google Cloud's command line, will help you get up to speed faster. In this quest, you'll learn how to install and configure Cloud SDK, then use gcloud to perform some basic operations like creating VMs, networks, using BigQuery, and using gsutil to perform operations.
Firebase is a backend-as-service (Bass) platform for creating mobile and web applications. In this quest you will learn to build serverless web apps, import data into a serverless database, and build a Google Assistant application with Firebase and its Google Cloud integrations. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
Mit dem Skill-Logo Serverlose Apps mit Firebase entwickeln weisen Sie Kenntnisse in den folgenden Bereichen nach: serverlose Webanwendungen mit Firebase entwickeln, Firestore für die Datenbankverwaltung verwenden, Bereitstellungsprozesse mit Cloud Build automatisieren und Google Assistant-Funktionen in Ihre Anwendungen integrieren.
Twelve years ago Lily started the Pet Theory chain of veterinary clinics, and has been expanding rapidly. Now, Pet Theory is experiencing some growing pains: their appointment scheduling system is not able to handle the increased load, customers aren't receiving lab results reliably through email and text, and veteranerians are spending more time with insurance companies than with their patients. Lily wants to build a cloud-based system that scales better than the legacy solution and doesn't require lots of ongoing maintenance. The team has decided to go with serverless technology. For the labs in the Google Cloud Run Serverless Quest, you will read through a fictitious business scenario in each lab and assist the characters in implementing a serverless solution. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google…
Mit dem Skill-Logo Serverlose Anwendungen in Cloud Run entwickeln weisen Sie Kenntnisse in den folgenden Bereichen nach: Cloud Run für Datenmanagement in Cloud Storage integrieren, mit Cloud Run und Pub/Sub die Architektur von asynchronen, ausfallsicheren Systemen erstellen, REST API-Gateways basierend auf Cloud Run aufbauen und Dienste auf Cloud Run entwickeln und bereitstellen.
In diesem Einführungskurs erhalten Sie praktische Fertigkeiten im Umgang mit den grundlegenden Tools und Services der Google Cloud. Ihnen werden optionale Videos bereitgestellt, in denen Sie sich weitergehend über die in den Labs behandelten Konzepte informieren können, so oft Sie möchten. „Google Cloud Essentials“ ist ein empfohlener erster Kurs für Google Cloud-Lernende. Selbst wenn Sie vor diesem Kurs wenig bis gar nichts über die Cloud gewusst haben, verfügen Sie danach über praktische Erfahrungen, die Sie in Ihrem ersten Google Cloud-Projekt anwenden können. Vom Schreiben von Cloud Shell- Befehlen und dem Bereitstellen Ihrer ersten virtuellen Maschine bis hin zum Ausführen von Anwendungen auf Kubernetes Engine oder mit Load-Balancing – Google Cloud Essentials ist eine erstklassige Einführung in die grundlegenden Funktionen der Plattform.
Mit dem Skill-Logo zum Kurs Cloud Load Balancing in der Compute Engine implementieren weisen Sie Kenntnisse in folgenden Bereichen nach: virtuelle Maschinen in der Compute Engine erstellen und bereitstellen und Netzwerk- und Application Load Balancer konfigurieren.
Erhalten Sie ein Skill-Logo, indem Sie den Kurs Cloud-Architektur: Entwerfen, umsetzen und verwalten abschließen. Dabei können Sie Fähigkeiten nachweisen, die für folgende Aufgaben nötig sind: eine öffentlich zugängliche Website mit Apache-Webservern bereitstellen, eine Compute Engine-VM mithilfe von Startscripts konfigurieren, sicheres RDP durch Nutzung von Firewallregeln und eines Windows-Bastion Hosts konfigurieren, ein Docker-Image in einem Kubernetes-Cluster bereitstellen und anschließend aktualisieren sowie eine Cloud SQL-Instanz erstellen und eine MySQL-Datenbank importieren. Diese Aufgabenreihe bietet eine gute Grundlage für bestimmte Themen, die Teil der Zertifizierungsprüfung zum Google Cloud Certified Professional Cloud Architect sind.
Sichern Sie sich ein Skill-Logo, indem Sie den Kurs Geschütztes Google Cloud-Netzwerk erstellen abschließen. Dabei lernen Sie verschiedene netzwerkbezogene Ressourcen kennen, mit denen Sie Ihre Anwendungen in Google Cloud erstellen, skalieren und schützen können.
Mit dem Skill-Logo Infrastruktur mit Terraform in Google Cloud erstellen weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Grundsätze von Infrastruktur als Code (IaC) unter Verwendung von Terraform, Bereitstellen und Verwalten von Google Cloud-Ressourcen mit Terraform-Konfigurationen, effektives Statusmanagement (lokal und remote) und die Modularisierung von Terraform-Code für Wiederverwendbarkeit und Organisation.
Mit dem Skill-Logo zum Kurs Grundlegende Sicherheitsfunktionen in Google Cloud implementieren weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Erstellen und Zuweisen von Rollen mit Identity and Access Management (IAM); Erstellen und Verwalten von Dienstkonten; Herstellen einer privaten Verbindung zwischen Virtual Private Cloud-Netzwerken (VPC); Beschränken des Anwendungszugriffs mithilfe von Identity-Aware Proxy; Verwalten von Schlüsseln und verschlüsselten Daten mit Cloud Key Management Service (KMS); und Erstellen eines privaten Kubernetes-Clusters.