Dołącz Zaloguj się

Francisco Colomer

Jest członkiem od 2023

Liga diamentowa

43048 pkt.
Google DeepMind: 02 Represent Your Language Data Earned sty 9, 2026 EST
Google DeepMind: 01 Build Your Own Small Language Model Earned sty 4, 2026 EST
Discover Business Value for Customers Earned gru 31, 2025 EST
Partner Pre-Sales Readiness Training Earned gru 26, 2025 EST
Modernizing Mainframe Applications with Google Cloud Earned gru 22, 2025 EST
Create and Manage AlloyDB Instances Earned gru 19, 2025 EST
Create and Manage Bigtable Instances Earned gru 17, 2025 EST
Create and Manage Cloud Spanner Instances Earned gru 15, 2025 EST
Create and Manage Cloud SQL for PostgreSQL Instances Earned gru 11, 2025 EST
Introduction to Vertex AI Studio Earned gru 5, 2025 EST
Introduction to Generative AI - Polski Earned gru 4, 2025 EST
Introduction to Reliable Deep Learning Earned lis 30, 2025 EST
Migrate MySQL Data to Cloud SQL Using Database Migration Service Earned lis 27, 2025 EST
Enterprise Database Migration Earned lis 25, 2025 EST
Select a Google Cloud Database for Your Applications Earned wrz 24, 2025 EDT
Google Cloud Fundamentals: Core Infrastructure - Polski Earned lip 26, 2025 EDT
Machine Learning in the Enterprise Earned wrz 29, 2024 EDT
How Google Does Machine Learning Earned maj 29, 2024 EDT
Engineer Data for Predictive Modeling with BigQuery ML Earned lis 15, 2023 EST
Build a Data Warehouse with BigQuery Earned lis 14, 2023 EST
Przygotowywanie danych do użycia z interfejsami ML w Google Cloud Earned lis 13, 2023 EST
Serverless Data Processing with Dataflow: Operations Earned lis 9, 2023 EST
Serverless Data Processing with Dataflow: Develop Pipelines Earned lis 4, 2023 EDT
Serverless Data Processing with Dataflow: Foundations Earned paź 26, 2023 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud Earned paź 23, 2023 EDT
Build Batch Data Pipelines on Google Cloud Earned paź 22, 2023 EDT
Build Streaming Data Pipelines on Google Cloud Earned paź 20, 2023 EDT
Build Data Lakes and Data Warehouses on Google Cloud Earned paź 14, 2023 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned paź 12, 2023 EDT
Preparing for your Professional Data Engineer Journey Earned paź 4, 2023 EDT

In this Google DeepMind course you will learn how to prepare text data for language models to process. You will investigate the tools and techniques used to prepare, structure, and represent text data for language models, with a focus on tokenization and embeddings. You will be encouraged to think critically about the decisions behind data preparation, and what biases within the data may be introduced into models. You will analyze trade-offs, learn how to work with vectors and matrices, how meaning is represented in language models. Finally, you will practice designing a dataset ethically using the Data Cards process, ensuring transparency, accountability, and respect for community values in AI development.

Więcej informacji

In this Google DeepMind course, you will learn the fundamentals of language models and gain a high-level understanding of the machine learning development pipeline. You will consider the strengths and limitations of traditional n-gram models and advanced transformer models. Practical coding labs will enable you to develop insights into how machine learning models work and how they can be used to generate text and identify patterns in language. Through real-world case studies, you will build an understanding around how research engineers operate. Drawing on these insights you will identify problems that you wish to tackle in your own community and consider how to leverage the power of machine learning responsibly to address these problems within a global and local context.

Więcej informacji

The course aims to train Google technical sales partners on the business value discovery process using proprietary content. Course activities use an external tool (Yoodli). Refer to Yoodli's Terms of Service and Privacy Notice.

Więcej informacji

Want to learn more about Google Cloud? Grow your Google Cloud knowledge, strengthen your skills to win with customers, and scale your Google Cloud business. Find it here in one handy location.

Więcej informacji

This course enables system integrators and partners to understand the principles of automated migrations, plan legacy system migrations to Google Cloud leveraging G4 Platform, and execute a trial code conversion.

Więcej informacji

Complete the introductory Create and Manage AlloyDB Instances skill badge to demonstrate skills in the following: performing core AlloyDB operations and tasks, migrating to AlloyDB from PostgreSQL, administering an AlloyDB database, and accelerating analytical queries using the AlloyDB Columnar Engine.

Więcej informacji

Complete the introductory Create and Manage Bigtable Instances skill badge to demonstrate skills in the following: creating instances, designing schemas, querying data, and performing administrative tasks in Bigtable including monitoring performance and configuring node autoscaling and replication.

Więcej informacji

Complete the introductory Create and Manage Cloud Spanner Instances skill badge to demonstrate skills in the following: creating and interacting with Cloud Spanner instances and databases; loading Cloud Spanner databases using various techniques; backing up Cloud Spanner databases; defining schemas and understanding query plans; and deploying a Modern Web App connected to a Cloud Spanner instance.

Więcej informacji

Complete the introductory Create and Manage Cloud SQL for PostgreSQL Instances skill badge to demonstrate skills in the following: migrating, configuring, and managing Cloud SQL for PostgreSQL instances and databases.

Więcej informacji

This course introduces Vertex AI Studio, a tool to interact with generative AI models, prototype business ideas, and launch them into production. Through an immersive use case, engaging lessons, and a hands-on lab, you’ll explore the prompt-to-product lifecycle and learn how to leverage Vertex AI Studio for Gemini multimodal applications, prompt design, prompt engineering, and model tuning. The aim is to enable you to unlock the potential of gen AI in your projects with Vertex AI Studio.

Więcej informacji

Celem tego szybkiego szkolenia dla początkujących jest wyjaśnienie, czym jest generatywna AI oraz jakie są jej zastosowania. Szkolenie przedstawia również różnice pomiędzy tą technologią a tradycyjnymi systemami uczącymi się, a także narzędzia Google, które pomogą Ci tworzyć własne aplikacje korzystające z generatywnej AI.

Więcej informacji

This course introduces you to the world of reliable deep learning, a critical discipline focused on developing machine learning models that not only make accurate predictions but also understand and communicate their own uncertainty. You'll learn how to create AI systems that are trustworthy, robust, and adaptable, particularly in high-stakes scenarios where errors can have significant consequences.

Więcej informacji

Complete the introductory Migrate MySQL Data to Cloud SQL Using Database Migration Service skill badge course to demonstrate skills in the following: migrating MySQL data to Cloud SQL using different job types and connectivity options available in Database Migration Service and migrating MySQL user data when running Database Migration Service jobs.

Więcej informacji

This course is intended to give architects, engineers, and developers the skills required to help enterprise customers architect, plan, execute, and test database migration projects. Through a combination of presentations, demos, and hands-on labs participants move databases to Google Cloud while taking advantage of various services. This course covers how to move on-premises, enterprise databases like SQL Server to Google Cloud (Compute Engine and Cloud SQL) and Oracle to Google Cloud bare metal.

Więcej informacji

In this course, you learn to analyze and choose the right database for your needs, to effectively develop applications on Google Cloud. You explore relational and NoSQL databases, dive into Cloud SQL, AlloyDB, and Spanner, and learn how to align database strengths with your application requirements, including those of generative AI. Gain hands-on experience configuring Vector Search and migrating applications to the cloud.

Więcej informacji

Szkolenie Google Cloud Fundamentals: Core Infrastructure wprowadza ważne pojęcia i terminologię potrzebne w pracy z Google Cloud. Za pomocą filmów i praktycznych modułów szkolenie prezentuje oraz porównuje usługi Google Cloud umożliwiające między innymi przetwarzanie i przechowywanie danych, a także zawiera ważne materiały i narzędzia do zarządzania zasadami.

Więcej informacji

This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.

Więcej informacji

This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.

Więcej informacji

Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML.

Więcej informacji

Complete the intermediate Build a Data Warehouse with BigQuery skill badge course to demonstrate skills in the following: joining data to create new tables, troubleshooting joins, appending data with unions, creating date-partitioned tables, and working with JSON, arrays, and structs in BigQuery.

Więcej informacji

Ukończ szkolenie wprowadzające Przygotowywanie danych do użycia z interfejsami ML w Google Cloud, aby zdobyć odznakę potwierdzającą zdobycie następujących umiejętności: czyszczenie danych przy użyciu usługi Dataprep firmy Trifacta, uruchamianie potoków danych w Dataflow, tworzenie klastrów i uruchamianie zadań Apache Spark w Dataproc, a także wywoływanie interfejsów API dotyczących uczenia maszynowego, w tym Cloud Natural Language API, Google Cloud Speech-to-Text API oraz Video Intelligence API.

Więcej informacji

In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.

Więcej informacji

In this second installment of the Dataflow course series, we are going to be diving deeper on developing pipelines using the Beam SDK. We start with a review of Apache Beam concepts. Next, we discuss processing streaming data using windows, watermarks and triggers. We then cover options for sources and sinks in your pipelines, schemas to express your structured data, and how to do stateful transformations using State and Timer APIs. We move onto reviewing best practices that help maximize your pipeline performance. Towards the end of the course, we introduce SQL and Dataframes to represent your business logic in Beam and how to iteratively develop pipelines using Beam notebooks.

Więcej informacji

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

Więcej informacji

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

Więcej informacji

In this intermediate course, you will learn to design, build, and optimize robust batch data pipelines on Google Cloud. Moving beyond fundamental data handling, you will explore large-scale data transformations and efficient workflow orchestration, essential for timely business intelligence and critical reporting. Get hands-on practice using Dataflow for Apache Beam and Serverless for Apache Spark (Dataproc Serverless) for implementation, and tackle crucial considerations for data quality, monitoring, and alerting to ensure pipeline reliability and operational excellence. A basic knowledge of data warehousing, ETL/ELT, SQL, Python, and Google Cloud concepts is recommended.

Więcej informacji

In this course you will get hands-on in order to work through real-world challenges faced when building streaming data pipelines. The primary focus is on managing continuous, unbounded data with Google Cloud products.

Więcej informacji

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

Więcej informacji

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Więcej informacji

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Więcej informacji