Teilnehmen Anmelden

Francisco Colomer

Mitglied seit 2023

Diamond League

43048 Punkte
Google DeepMind: 02 Represent Your Language Data Earned Jan 9, 2026 EST
Google DeepMind: 01 Build Your Own Small Language Model Earned Jan 4, 2026 EST
Discover Business Value for Customers Earned Dez 31, 2025 EST
Partner Pre-Sales Readiness Training Earned Dez 26, 2025 EST
Modernizing Mainframe Applications with Google Cloud Earned Dez 22, 2025 EST
AlloyDB-Instanzen erstellen und verwalten Earned Dez 19, 2025 EST
Bigtable-Instanzen erstellen und verwalten Earned Dez 17, 2025 EST
Cloud Spanner-Instanzen erstellen und verwalten Earned Dez 15, 2025 EST
Cloud SQL for PostgreSQL-Instanzen erstellen und verwalten Earned Dez 11, 2025 EST
Einführung in Vertex AI Studio Earned Dez 5, 2025 EST
Einführung in generative KI Earned Dez 4, 2025 EST
Introduction to Reliable Deep Learning Earned Nov 30, 2025 EST
Database Migration Service verwenden, um MySQL-Daten nach Cloud SQL zu migrieren Earned Nov 27, 2025 EST
Enterprise Database Migration Earned Nov 25, 2025 EST
Select a Google Cloud Database for Your Applications Earned Sep 24, 2025 EDT
Google Cloud-Grundlagen: Kerninfrastruktur Earned Jul 26, 2025 EDT
Machine Learning in the Enterprise Earned Sep 29, 2024 EDT
How Google Does Machine Learning Earned Mai 29, 2024 EDT
Daten für die Vorhersagemodellierung mit BigQuery ML vorbereiten Earned Nov 15, 2023 EST
Data Warehouse mit BigQuery erstellen Earned Nov 14, 2023 EST
Daten für ML-APIs in Google Cloud vorbereiten Earned Nov 13, 2023 EST
Serverless Data Processing with Dataflow: Operations Earned Nov 9, 2023 EST
Serverless Data Processing with Dataflow: Develop Pipelines Earned Nov 4, 2023 EDT
Serverless Data Processing with Dataflow: Foundations Earned Okt 26, 2023 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud Earned Okt 23, 2023 EDT
Build Batch Data Pipelines on Google Cloud Earned Okt 22, 2023 EDT
Build Streaming Data Pipelines on Google Cloud Earned Okt 20, 2023 EDT
Build Data Lakes and Data Warehouses on Google Cloud Earned Okt 14, 2023 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned Okt 12, 2023 EDT
Preparing for your Professional Data Engineer Journey Earned Okt 4, 2023 EDT

In this Google DeepMind course you will learn how to prepare text data for language models to process. You will investigate the tools and techniques used to prepare, structure, and represent text data for language models, with a focus on tokenization and embeddings. You will be encouraged to think critically about the decisions behind data preparation, and what biases within the data may be introduced into models. You will analyze trade-offs, learn how to work with vectors and matrices, how meaning is represented in language models. Finally, you will practice designing a dataset ethically using the Data Cards process, ensuring transparency, accountability, and respect for community values in AI development.

Weitere Informationen

In this Google DeepMind course, you will learn the fundamentals of language models and gain a high-level understanding of the machine learning development pipeline. You will consider the strengths and limitations of traditional n-gram models and advanced transformer models. Practical coding labs will enable you to develop insights into how machine learning models work and how they can be used to generate text and identify patterns in language. Through real-world case studies, you will build an understanding around how research engineers operate. Drawing on these insights you will identify problems that you wish to tackle in your own community and consider how to leverage the power of machine learning responsibly to address these problems within a global and local context.

Weitere Informationen

The course aims to train Google technical sales partners on the business value discovery process using proprietary content. Course activities use an external tool (Yoodli). Refer to Yoodli's Terms of Service and Privacy Notice.

Weitere Informationen

Want to learn more about Google Cloud? Grow your Google Cloud knowledge, strengthen your skills to win with customers, and scale your Google Cloud business. Find it here in one handy location.

Weitere Informationen

This course enables system integrators and partners to understand the principles of automated migrations, plan legacy system migrations to Google Cloud leveraging G4 Platform, and execute a trial code conversion.

Weitere Informationen

Mit dem Skill-Logo zum Kurs AlloyDB-Instanzen erstellen und verwalten weisen Sie Grundkenntnisse in den folgenden Bereichen nach: zentrale AlloyDB-Abläufe und ‑Aufgaben ausführen, von PostgreSQL zu AlloyDB migrieren, AlloyDB-Datenbanken verwalten und analytische Abfragen mit der spaltenbasierten Engine von AlloyDB beschleunigen.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Bigtable-Instanzen erstellen und verwalten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Instanzen erstellen, Schemas entwerfen, Daten abfragen und Verwaltungsaufgaben in Bigtable ausführen (unter anderem Leistung überwachen sowie Autoscaling und Replikation von Knoten konfigurieren).

Weitere Informationen

Mit dem Skill-Logo zum Kurs Cloud Spanner-Instanzen erstellen und verwalten für Einsteigerinnen und Einsteiger weisen Sie Kenntnisse in folgenden Bereichen nach: Cloud Spanner-Instanzen und ‑Datenbanken erstellen und sie verwenden; Cloud Spanner-Datenbanken über verschiedene Verfahren laden; Cloud Spanner-Datenbanken sichern, Datenbankschemas definieren und Abfragepläne verstehen sowie eine moderne Web-App bereitstellen, die mit einer Cloud Spanner-Instanz verbunden ist.

Weitere Informationen

Mit dem Skill-Logo zum Einsteigerkurs Cloud SQL for PostgreSQL-Instanzen erstellen und verwalten weisen Sie Kenntnisse in folgenden Bereichen nach: Migrieren, Konfigurieren und Verwalten von Cloud SQL for PostgreSQL-Instanzen und ‑Datenbanken.

Weitere Informationen

Dieser Kurs bietet eine Einführung in Vertex AI Studio, ein Tool für die Interaktion mit generativen KI-Modellen sowie das Prototyping von Geschäftsideen und ihre Umsetzung. Anhand eines eindrucksvollen Anwendungsfalls, ansprechender Lektionen und einer praktischen Übung lernen Sie den Lebenszyklus vom Prompt bis zum Produkt kennen und erfahren, wie Sie Vertex AI Studio für multimodale Gemini-Anwendungen, Prompt-Design, Prompt Engineering und Modellabstimmung einsetzen können. Ziel ist es, Ihnen aufzuzeigen, wie Sie das Potenzial von generativer KI in Ihren Projekten mit Vertex AI Studio ausschöpfen.

Weitere Informationen

In diesem Einführungskurs im Microlearning-Format wird erklärt, was generative KI ist, wie sie genutzt wird und wie sie sich von herkömmlichen Methoden für Machine Learning unterscheidet. Darüber hinaus werden Tools von Google behandelt, mit denen Sie eigene Anwendungen basierend auf generativer KI entwickeln können.

Weitere Informationen

This course introduces you to the world of reliable deep learning, a critical discipline focused on developing machine learning models that not only make accurate predictions but also understand and communicate their own uncertainty. You'll learn how to create AI systems that are trustworthy, robust, and adaptable, particularly in high-stakes scenarios where errors can have significant consequences.

Weitere Informationen

Mit dem Skill-Logo zum Einsteigerkurs Database Migration Service verwenden, um MySQL-Daten nach Cloud SQL zu migrieren weisen Sie Kenntnisse in folgenden Bereichen nach: verschiedene in Database Migration Service verfügbare Jobtypen und Verbindungsoptionen nutzen, um MySQL-Daten nach Cloud SQL zu migrieren, und beim Ausführen von Database Migration Service-Jobs MySQL-Nutzerdaten migrieren.

Weitere Informationen

This course is intended to give architects, engineers, and developers the skills required to help enterprise customers architect, plan, execute, and test database migration projects. Through a combination of presentations, demos, and hands-on labs participants move databases to Google Cloud while taking advantage of various services. This course covers how to move on-premises, enterprise databases like SQL Server to Google Cloud (Compute Engine and Cloud SQL) and Oracle to Google Cloud bare metal.

Weitere Informationen

In this course, you learn to analyze and choose the right database for your needs, to effectively develop applications on Google Cloud. You explore relational and NoSQL databases, dive into Cloud SQL, AlloyDB, and Spanner, and learn how to align database strengths with your application requirements, including those of generative AI. Gain hands-on experience configuring Vector Search and migrating applications to the cloud.

Weitere Informationen

In „Google Cloud-Grundlagen: Kerninfrastruktur“ werden wichtige Konzepte und die Terminologie für die Arbeit mit Google Cloud vorgestellt. In Videos und praxisorientierten Labs werden viele Computing- und Speicherdienste von Google Cloud sowie wichtige Tools für die Ressourcen- und Richtlinienverwaltung präsentiert und miteinander verglichen.

Weitere Informationen

This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.

Weitere Informationen

This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Daten für die Vorhersagemodellierung mit BigQuery ML vorbereiten weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Erstellen von Pipelines für die Datentransformation nach BigQuery mithilfe von Dataprep von Trifacta; Extrahieren, Transformieren und Laden (ETL) von Workflows mit Cloud Storage, Dataflow und BigQuery; und Erstellen von Machine-Learning-Modellen mithilfe von BigQuery ML.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Data Warehouse mit BigQuery erstellen weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Daten zusammenführen, um neue Tabellen zu erstellen, Probleme mit Joins lösen, Daten mit Unions anhängen, nach Daten partitionierte Tabellen erstellen und JSON, Arrays sowie Strukturen in BigQuery nutzen.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Daten für ML-APIs in Google Cloud vorbereiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bereinigen von Daten mit Dataprep von Trifacta, Ausführen von Datenpipelines in Dataflow, Erstellen von Clustern und Ausführen von Apache Spark-Jobs in Dataproc sowie Aufrufen von ML-APIs, einschließlich der Cloud Natural Language API, Cloud Speech-to-Text API und Video Intelligence API.

Weitere Informationen

In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.

Weitere Informationen

In this second installment of the Dataflow course series, we are going to be diving deeper on developing pipelines using the Beam SDK. We start with a review of Apache Beam concepts. Next, we discuss processing streaming data using windows, watermarks and triggers. We then cover options for sources and sinks in your pipelines, schemas to express your structured data, and how to do stateful transformations using State and Timer APIs. We move onto reviewing best practices that help maximize your pipeline performance. Towards the end of the course, we introduce SQL and Dataframes to represent your business logic in Beam and how to iteratively develop pipelines using Beam notebooks.

Weitere Informationen

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

Weitere Informationen

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

Weitere Informationen

In this intermediate course, you will learn to design, build, and optimize robust batch data pipelines on Google Cloud. Moving beyond fundamental data handling, you will explore large-scale data transformations and efficient workflow orchestration, essential for timely business intelligence and critical reporting. Get hands-on practice using Dataflow for Apache Beam and Serverless for Apache Spark (Dataproc Serverless) for implementation, and tackle crucial considerations for data quality, monitoring, and alerting to ensure pipeline reliability and operational excellence. A basic knowledge of data warehousing, ETL/ELT, SQL, Python, and Google Cloud concepts is recommended.

Weitere Informationen

In this course you will get hands-on in order to work through real-world challenges faced when building streaming data pipelines. The primary focus is on managing continuous, unbounded data with Google Cloud products.

Weitere Informationen

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

Weitere Informationen

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Weitere Informationen

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Weitere Informationen