Rejoindre Se connecter

Arjun Pramanik

Date d'abonnement : 2025

Ligue d'Argent

5291 points
Google DeepMind: 04 Discover The Transformer Architecture Earned oct. 26, 2025 EDT
Google DeepMind: 03 Design And Train Neural Networks Earned oct. 25, 2025 EDT
Google DeepMind: 02 Represent Your Language Data Earned oct. 25, 2025 EDT
Google DeepMind: 01 Build Your Own Small Language Model Earned oct. 25, 2025 EDT

In this Google DeepMind course you will discover the mechanisms of the transformer architecture. You will investigate how transformer language models process prompts to make context-sensitive next-token predictions. Through practical activities you will explore the attention mechanism, visualize attention weights, and encounter advanced concepts like masked attention and multi-head attention. You will also learn other techniques that are necessary to build neural networks that are well-suited to be used as language models. Finally, through activities on values, stakeholder mapping and community engagement, you will practice concrete tools for ensuring AI projects are developed with communities, not just for them.

En savoir plus

In this Google DeepMind course you will focus on the training process for machine learning models. You will learn how to spot and mitigate issues when training a model, such as overfitting and underfitting. In practical coding labs, you will implement and evaluate the multilayer perceptron for simple classification tasks. This will provide insights into the mechanics of training a neural network model and the backpropagation algorithm. Research case studies will demonstrate how neural networks power real-world models. Additionally, you will consider the broader social impacts of innovation by looking beyond immediate benefits to anticipate potential risks, safety concerns, and further-reaching societal consequences.

En savoir plus

In this Google DeepMind course you will learn how to prepare text data for language models to process. You will investigate the tools and techniques used to prepare, structure, and represent text data for language models, with a focus on tokenization and embeddings. You will be encouraged to think critically about the decisions behind data preparation, and what biases within the data may be introduced into models. You will analyze trade-offs, learn how to work with vectors and matrices, how meaning is represented in language models. Finally, you will practice designing a dataset ethically using the Data Cards process, ensuring transparency, accountability, and respect for community values in AI development.

En savoir plus

In this Google DeepMind course, you will learn the fundamentals of language models and gain a high-level understanding of the machine learning development pipeline. You will consider the strengths and limitations of traditional n-gram models and advanced transformer models. Practical coding labs will enable you to develop insights into how machine learning models work and how they can be used to generate text and identify patterns in language. Through real-world case studies, you will build an understanding around how research engineers operate. Drawing on these insights you will identify problems that you wish to tackle in your own community and consider how to leverage the power of machine learning responsibly to address these problems within a global and local context.

En savoir plus