Приєднатися Увійти

Sergio Rubiano

Учасник із 2020

Срібна ліга

Кількість балів: 11300
Data Catalog Fundamentals Earned серп. 11, 2022 EDT
Architecting with Google Kubernetes Engine: Workloads - Locales Earned квіт. 22, 2022 EDT
Architecting with Google Kubernetes Engine: Foundations - Locales Earned квіт. 11, 2022 EDT
Modernizing Data Lakes and Data Warehouses with Google Cloud - Locales Earned бер. 16, 2022 EDT
Build Data Lakes and Data Warehouses on Google Cloud Earned лют. 28, 2022 EST
Modernizing Data Lakes and Data Warehouses with Google Cloud - Locales Earned груд. 30, 2021 EST
Build a Data Warehouse with BigQuery Earned серп. 21, 2021 EDT
Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud Earned серп. 12, 2021 EDT
Build a Secure Google Cloud Network Earned серп. 7, 2021 EDT
Google Cloud Computing Foundations: Networking & Security in Google Cloud Earned серп. 7, 2021 EDT
Google Cloud Computing Foundations: Infrastructure in Google Cloud Earned лип. 31, 2021 EDT
Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Earned лип. 20, 2021 EDT
Use Machine Learning APIs on Google Cloud Earned лип. 11, 2021 EDT
Automate Interactions with Contact Center AI Earned черв. 26, 2021 EDT
DEPRECATED IoT in the Google Cloud Earned черв. 16, 2021 EDT
DEPRECATED Explore Machine Learning Models with Explainable AI Earned черв. 14, 2021 EDT
DEPRECATED Cloud Architecture Earned черв. 9, 2021 EDT
Engineer Data for Predictive Modeling with BigQuery ML Earned черв. 8, 2021 EDT
Підготовка даних для інтерфейсів API машинного навчання в Google Cloud Earned черв. 7, 2021 EDT
[DEPRECATED] Building Advanced Codeless Pipelines on Cloud Data Fusion Earned черв. 2, 2021 EDT
Налаштування Cloud Load Balancing для Compute Engine Earned трав. 29, 2021 EDT
Building Codeless Pipelines on Cloud Data Fusion Earned трав. 26, 2021 EDT
Create ML Models with BigQuery ML Earned трав. 7, 2021 EDT
Data Science on Google Cloud: Machine Learning Earned трав. 6, 2021 EDT
DEPRECATED Applying BigQuery ML's Classification, Regression, and Demand Forecasting for Retail Applications Earned квіт. 22, 2021 EDT
DEPRECATED BigQuery for Marketing Analysts Earned квіт. 19, 2021 EDT
Derive Insights from BigQuery Data Earned квіт. 19, 2021 EDT
[DEPRECATED] Data Engineering Earned квіт. 5, 2021 EDT
Cloud SQL Earned бер. 30, 2021 EDT
Deprecated Kubernetes Solutions Earned бер. 10, 2021 EST
GKE & Anthos Earned лют. 19, 2021 EST
Intro to BigQuery: Analytics & Machine Learning Earned лют. 19, 2021 EST
Kubernetes in Google Cloud Earned лют. 17, 2021 EST
Data Science on Google Cloud Earned січ. 5, 2021 EST
Confluent on Google Cloud Earned лист. 5, 2020 EST
BigQuery for Data Warehousing I Earned жовт. 30, 2020 EDT
Cloud Hero: Data & ML Earned жовт. 27, 2020 EDT
Початок роботи з даними, машинним навчанням і штучним інтелектом Earned жовт. 14, 2020 EDT
Налаштування середовища для розробки додатка в Google Cloud Earned серп. 31, 2020 EDT
Scientific Data Processing Earned лип. 11, 2020 EDT
DEPRECATED BigQuery for Data Warehousing Earned лип. 1, 2020 EDT
Intro to ML: Image Processing Earned черв. 24, 2020 EDT
Machine Learning APIs Earned черв. 16, 2020 EDT

このゲームはすでに終了しています。

close

Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.

Докладніше

This course, Architecting with Google Kubernetes Engine: Workloads - Locales, is intended for non-English learners. If you want to take this course in English, please enroll in Architecting with Google Kubernetes Engine: Workloads. In this course, "Architecting with Google Kubernetes Engine: Workloads," you learn about performing Kubernetes operations; creating and managing deployments; the tools of GKE networking; and how to give your Kubernetes workloads persistent storage. This is the second course of the Architecting with Google Kubernetes Engine series. After completing this course, enroll in the Reliable Google Cloud Infrastructure: Design and Process course or the Hybrid Cloud Infrastructure Foundations with Anthos course.

Докладніше

"This course, Architecting with Google Kubernetes Engine: Foundations - Locales, is intended for non-English learners. If you want to take this course in English, please enroll in Architecting with Google Kubernetes Engine: Foundations". In this course, "Architecting with Google Kubernetes Engine: Foundations," you get a review of the layout and principles of Google Cloud, followed by an introduction to creating and managing software containers and an introduction to the architecture of Kubernetes. This is the first course of the Architecting with Google Kubernetes Engine series. After completing this course, enroll in the Architecting with Google Kubernetes Engine: Workloads course.

Докладніше

This course, Modernizing Data Lakes and Data Warehouses with Google Cloud - Locales, is intended for non-English learners. If you want to take this course in English, please enroll in Modernizing Data Lakes and Data Warehouses with Google Cloud. The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.

Докладніше

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

Докладніше

This course, Modernizing Data Lakes and Data Warehouses with Google Cloud - Locales, is intended for non-English learners. If you want to take this course in English, please enroll in Modernizing Data Lakes and Data Warehouses with Google Cloud. The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.

Докладніше

Complete the intermediate Build a Data Warehouse with BigQuery skill badge course to demonstrate skills in the following: joining data to create new tables, troubleshooting joins, appending data with unions, creating date-partitioned tables, and working with JSON, arrays, and structs in BigQuery.

Докладніше

The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.

Докладніше

Earn a skill badge by completing the Build a Secure Google Cloud Network skill badge course, where you will learn about multiple networking-related resources to build, scale, and secure your applications on Google Cloud.

Докладніше

The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This third course covers cloud automation and management tools and building secure networks.

Докладніше

The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud

Докладніше

This course, Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales, is intended for non-English learners. If you want to take this course in English, please enroll in Google Cloud Computing Foundations: Cloud Computing Fundamentals .The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud …

Докладніше

Earn the advanced skill badge by completing the Use Machine Learning APIs on Google Cloud course, where you learn the basic features for the following machine learning and AI technologies: Cloud Vision API, Cloud Translation API, and Cloud Natural Language API.

Докладніше

Earn a skill badge by completing the Automate Interactions with Contact Center AI quest, where you will learn about the features of Contact Center AI, including how to Build a virtual agent, Design conversation flows for your virtual agent; Add a phone gateway to your virtual agent; Use Dialogflow for troubleshooting; Review logs and debug your virtual agent. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge quest, and final assessment challenge lab, to receive a digital badge that you can share with your network.

Докладніше

In this quest, you will learn about Google Cloud’s IoT Core service and its integration with other services like GCS, Dataprep, Stackdriver and Firestore. The labs in this quest use simulator code to mimic IOT devices and the learning here should empower you to implement the same streaming pipeline with real world IoT devices.

Докладніше

Earn a skill badge by completing the Explore Machine Learning Models with Explainable AI quest, where you will learn how to do the following using Explainable AI: build and deploy a model to an AI platform for serving (prediction), use the What-If Tool with an image recognition model, identify bias in mortgage data using the What-If Tool, and compare models using the What-If Tool to identify potential bias. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest and the final assessment challenge lab to receive a skill badge that you can share with your network.

Докладніше

This fundamental-level quest is unique amongst the other quest offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Cloud Architect Certification. From IAM, to networking, to Kubernetes engine deployment, this quest is composed of specific labs that will put your Google Cloud knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, we recommend that you also review the exam guide and other available preparation resources.

Докладніше

Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML.

Докладніше

Пройдіть вступний кваліфікаційний курс Підготовка даних для інтерфейсів API машинного навчання в Google Cloud, щоб продемонструвати свої навички щодо очистки даних за допомогою сервісу Dataprep by Trifacta, запуску конвеєрів даних у Dataflow, створення кластерів і запуску завдань Apache Spark у Dataproc, а також виклику API машинного навчання, зокрема Cloud Natural Language API, Google Cloud Speech-to-Text API і Video Intelligence API.

Докладніше

This advanced-level Quest builds on its predecessor Quest, and offers hands-on practice on the more advanced data integration features available in Cloud Data Fusion, while sharing best practices to build more robust, reusable, dynamic pipelines. Learners get to try out the data lineage feature as well to derive interesting insights into their data’s history.

Докладніше

Пройдіть вступний кваліфікаційний курс Налаштування Cloud Load Balancing для Compute Engine, щоб продемонструвати свої навички: створення й розгортання віртуальних машин у Compute Engine; налаштування мережі й розподілювачів навантаження додатків.

Докладніше

This quest offers hands-on practice with Cloud Data Fusion, a cloud-native, code-free, data integration platform. ETL Developers, Data Engineers and Analysts can greatly benefit from the pre-built transformations and connectors to build and deploy their pipelines without worrying about writing code. This Quest starts with a quickstart lab that familiarises learners with the Cloud Data Fusion UI. Learners then get to try running batch and realtime pipelines as well as using the built-in Wrangler plugin to perform some interesting transformations on data.

Докладніше

Complete the intermediate Create ML Models with BigQuery ML skill badge to demonstrate skills in creating and evaluating machine learning models with BigQuery ML to make data predictions.

Докладніше

This is the second of two Quests of hands-on labs derived from the exercises from the book Data Science on Google Cloud Platform, 2nd Edition by Valliappa Lakshmanan, published by O'Reilly Media, Inc. In this second Quest, covering chapter 9 through the end of the book, you extend the skills practiced in the first Quest, and run full-fledged machine learning jobs with state-of-the-art tools and real-world data sets, all using Google Cloud tools and services.

Докладніше

In this course you will learn how to use several BigQuery ML features to improve retail use cases. Predict the demand for bike rentals in NYC with demand forecasting, and see how to use BigQuery ML for a classification task that predicts the likelihood of a website visitor making a purchase.

Докладніше

Want to turn your marketing data into insights and build dashboards? Bring all of your data into one place for large-scale analysis and model building. Get repeatable, scalable, and valuable insights into your data by learning how to query it and using BigQuery. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.

Докладніше

Complete the introductory Derive Insights from BigQuery Data skill badge course to demonstrate skills in the following: Write SQL queries.Query public tables.Load sample data into BigQuery.Troubleshoot common syntax errors with the query validator in BigQuery.Create reports in Looker Studio by connecting to BigQuery data.

Докладніше

This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.

Докладніше

Cloud SQL is a fully managed database service that stands out from its peers due to high performance, seamless integration, and impressive scalability. In this quest you will receive hands-on practice with the basics of Cloud SQL and quickly progress to advanced features, which you will apply to production frameworks and application environments. From creating instances and querying data with SQL, to building Deployment Manager scripts and connecting Cloud SQL instances with applications run on GKE containers, this quest will give you the knowledge and experience needed so you can start integrating this service right away.

Докладніше

Containerized applications have changed the game and are here to stay. With Kubernetes, you can orchestrate containers with ease, and integration with the Google Cloud Platform is seamless. In this advanced-level quest, you will be exposed to a wide range of Kubernetes use cases and will get hands-on practice architecting solutions over the course of 8 labs. From building Slackbots with NodeJS, to deploying game servers on clusters, to running the Cloud Vision API, Kubernetes Solutions will show you first-hand how agile and powerful this container orchestration system is.

Докладніше

Welcome to Cloud Hero, Gamers! Click "Join this Game". To modify your player name or avatar, go to your My Account page at https://google.qwiklabs.com. Points are earned by completing the steps in the lab.... and bonus points are earned for speed! Be sure to complete each lab by selecting the END option to get the maximum points. Please respect the GCP resource quotas that have been allocated. Otherwise, you'll waste your Game time and gain fewer points.

Докладніше

Welcome Gamers! Today's game is all about experimenting with Big Query for Machine Learning! Use real life case studies to learn various concepts of BQML and have fun. Take labs to earn points. The faster you complete the lab objectives, the higher your score.

Докладніше

Kubernetes is the most popular container orchestration system, and Google Kubernetes Engine was designed specifically to support managed Kubernetes deployments in Google Cloud. In this course, you will get hands-on practice configuring Docker images, containers, and deploying fully-fledged Kubernetes Engine applications.

Докладніше

This is the first of two Quests of hands-on labs is derived from the exercises from the book Data Science on Google Cloud Platform, 2nd Edition by Valliappa Lakshmanan, published by O'Reilly Media, Inc. In this first Quest, covering up through chapter 8, you are given the opportunity to practice all aspects of ingestion, preparation, processing, querying, exploring and visualizing data sets using Google Cloud tools and services.

Докладніше

Organizations around the world rely on Apache Kafka to integrate existing systems in real time and build a new class of event streaming applications that unlock new business opportunities. Google and Confluent are in a partnership to deliver the best event streaming service based on Apache Kafka and to build event driven applications and big data pipelines on Google Cloud Platform. In this game, you will first learn how to deploy and create a streaming data pipeline with Apache Kafka. You will then perform hand-on labs on the different functionalities of the Confluent Platform including deploying and running Apache Kafka on GKE and developing a Streaming Microservices Application.

Докладніше

Welcome Gamers! Have fun in today's game with Big Query concepts and Data Warehousing. Learn how to create new tables, pipelines and ingest dataets using Big Query. Take labs to earn points. The faster you complete the lab objectives, the higher your score.

Докладніше

Cloud Hero is played around the world, in person and online. Today, you have the opportunity to become your a cloud hero! This game is all about how GCP helps you get the most out of your data. You will compete to see who can finish the game with the highest score. Earn the points by completing the steps in the lab.... and get bonus points for speed! Be sure to click "End" when you're done with each lab to get the maximum points. All players will be awarded the game badge.

Докладніше

Зараз усі говорять про масиви даних, машинне навчання й штучний інтелект, але це досить вузькоспеціалізовані теми, про які важко знайти матеріали, зрозумілі не лише спеціалістам. На щастя, Google Cloud пропонує зручні сервіси в цих галузях, а завдяки цьому вступному курсу ви зможете ознайомитися з такими інструментами, як BigQuery, Cloud Speech API і Video Intelligence.

Докладніше

Щоб отримати кваліфікаційний значок, пройдіть курс Налаштування середовища для розробки додатка в Google Cloud. У ньому ви навчитеся створювати й підключати хмарну інфраструктуру, спрямовану на зберігання даних, за допомогою базових можливостей таких технологій, як Cloud Storage, система керування ідентифікацією і доступом, Cloud Functions та Pub/Sub.

Докладніше

Big data, machine learning, and scientific data? It sounds like the perfect match. In this advanced-level quest, you will get hands-on practice with GCP services like Big Query, Dataproc, and Tensorflow by applying them to use cases that employ real-life, scientific data sets. By getting experience with tasks like earthquake data analysis and satellite image aggregation, Scientific Data Processing will expand your skill set in big data and machine learning so you can start tackling your own problems across a spectrum of scientific disciplines.

Докладніше

Looking to build or optimize your data warehouse? Learn best practices to Extract, Transform, and Load your data into Google Cloud with BigQuery. In this series of interactive labs you will create and optimize your own data warehouse using a variety of large-scale BigQuery public datasets. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.

Докладніше

Using large scale computing power to recognize patterns and "read" images is one of the foundational technologies in AI, from self-driving cars to facial recognition. The Google Cloud Platform provides world class speed and accuracy via systems that can utilized by simply calling APIs. With these and a host of other APIs, GCP has a tool for just about any machine learning job. In this introductory quest, you will get hands-on practice with machine learning as it applies to image processing by taking labs that will enable you to label images, detect faces and landmarks, as well as extract, analyze, and translate text from within images.

Докладніше

It's no secret that machine learning is one of the fastest growing fields in tech, and Google Cloud has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning APIs by taking labs like Detect Labels, Faces, and Landmarks in Images with the Cloud Vision API. Looking for a hands-on challenge lab to demonstrate your skills and validate your knowledge? Enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.

Докладніше