This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud with a focus on Compute Engine. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including infrastructure components such as networks, systems and applications services. This course also covers deploying practical solutions including customer-supplied encryption keys, security and access management, quotas and billing, and resource monitoring.
In diesem Einführungskurs im Microlearning-Format wird erklärt, was generative KI ist, wie sie genutzt wird und wie sie sich von herkömmlichen Methoden für Machine Learning unterscheidet. Darüber hinaus werden Tools von Google behandelt, mit denen Sie eigene Anwendungen basierend auf generativer KI entwickeln können.
This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including securely interconnecting networks, load balancing, autoscaling, infrastructure automation and managed services.
This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud with a focus on Compute Engine. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including infrastructure components such as networks, virtual machines and applications services. You will learn how to use the Google Cloud through the console and Cloud Shell. You'll also learn about the role of a cloud architect, approaches to infrastructure design, and virtual networking configuration with Virtual Private Cloud (VPC), Projects, Networks, Subnetworks, IP addresses, Routes, and Firewall rules.
In „Google Cloud-Grundlagen: Kerninfrastruktur“ werden wichtige Konzepte und die Terminologie für die Arbeit mit Google Cloud vorgestellt. In Videos und praxisorientierten Labs werden viele Computing- und Speicherdienste von Google Cloud sowie wichtige Tools für die Ressourcen- und Richtlinienverwaltung präsentiert und miteinander verglichen.
Dieser Kurs hilft Ihnen, sich strukturiert auf die Prüfung zum Associate Cloud Engineer vorzubereiten. Sie erfahren mehr über die in der Prüfung behandelten Google Cloud-Themen und wie Sie einen Lernplan zur Erweiterung Ihrer Kenntnisse erstellen.
Sichern Sie sich das Skill-Logo für Fortgeschrittene, indem Sie den Kurs APIs für Machine Learning in Google Cloud verwenden abschließen – hier lernen Sie die grundlegenden Funktionen der folgenden Machine-Learning- und KI-Technologien kennen: Cloud Vision API, Cloud Translation API und Cloud Natural Language API.
Mit dem Skill-Logo zum Kurs ML-Modelle mit BigQuery ML erstellen weisen Sie fortgeschrittene Kenntnisse in folgendem Bereich nach: Erstellen und Bewerten von Machine-Learning-Modellen mit BigQuery ML, um Datenvorhersagen zu treffen.
Mit dem Skill-Logo zum Kurs ML-Lösungen mit Vertex AI erstellen und bereitstellen weisen Sie fortgeschrittene Kenntnisse nach. Sie lernen in diesem Kurs, wie Sie die Vertex AI-Plattform von Google Cloud, AutoML und benutzerdefinierte Trainingsdienste nutzen, um Machine-Learning-Modelle zu trainieren, zu bewerten, abzustimmen, zu erklären und bereitzustellen. Dieser Kurs richtet sich an professionelle Data Scientists und Machine Learning Engineers. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über Produkte und Dienste von Google Cloud belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie diese Aufgabenreihe und die Challenge-Lab-Prüfung, um ein digitales Abzeichen zu erhalten, das Sie in Ihrem Netzwerk posten können.
Die Kursreihe „Einführung in das Cloud-Computing von Google“ richtet sich an Personen mit geringen oder gar keinen Vorkenntnissen oder Erfahrungen im Bereich Cloud Computing. Sie bietet einen Überblick über Cloud-Grundlagen, Big Data, maschinelles Lernen und die Rolle von Google Cloud in diesem Bereich. Am Ende der Kursreihe können Teilnehmende diese Konzepte erläutern und einige praktische Fähigkeiten demonstrieren. Die Kurse sollten in folgender Reihenfolge absolviert werden: 1. Einführung in das Cloud-Computing von Google: Cloud-Computing-Grundlagen 2. Einführung in das Cloud-Computing von Google: Infrastruktur in Google Cloud 3. Einführung in das Cloud-Computing von Google: Netzwerke und Sicherheit in Google Cloud 4. Einführung in das Cloud-Computing von Google: Daten, ML und KI in Google Cloud Im letzten Kurs der Reihe geht es um verwaltete Big-Data-Dienste, maschinelles Lernen und dessen Vorzüge sowie die Möglichkeit, Ihre Google Cloud-Kompetenzen durch den Erwerb von Skill-L…
Die Kurse „Einführung in das Cloud-Computing von Google“ richten sich an Personen mit wenigen bis gar keinen Vorkenntnissen oder Erfahrungen im Bereich Cloud-Computing Sie bieten einen detaillierten Überblick über Cloud-Grundlagen, Big Data, maschinelles Lernen und die Rolle von Google Cloud in diesem Bereich. Am Ende der Kursreihe können Teilnehmende diese Konzepte erläutern und einige praktische Fähigkeiten demonstrieren. Die Kurse sollten in folgender Reihenfolge absolviert werden: 1. Einführung in das Cloud-Computing von Google: Cloud-Computing-Grundlagen 2. Einführung in das Cloud-Computing von Google: Infrastruktur in Google Cloud 3. Einführung in das Cloud-Computing von Google: Netzwerke und Sicherheit in Google Cloud 4. Einführung in das Cloud-Computing von Google: Daten, ML und KI in Google Cloud Dieser dritte Kurs behandelt Tools zur Cloud-Automatisierung- und -Verwaltung sowie den Aufbau sicherer Netzwerke.
Mit dem Skill-Logo zum Kurs Daten für ML-APIs in Google Cloud vorbereiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bereinigen von Daten mit Dataprep von Trifacta, Ausführen von Datenpipelines in Dataflow, Erstellen von Clustern und Ausführen von Apache Spark-Jobs in Dataproc sowie Aufrufen von ML-APIs, einschließlich der Cloud Natural Language API, Cloud Speech-to-Text API und Video Intelligence API.
Sichern Sie sich ein Skill-Logo, indem Sie den Kurs Geschütztes Google Cloud-Netzwerk erstellen abschließen. Dabei lernen Sie verschiedene netzwerkbezogene Ressourcen kennen, mit denen Sie Ihre Anwendungen in Google Cloud erstellen, skalieren und schützen können.
Erhalten Sie ein Skill-Logo, indem Sie den Kurs „Umgebung für die Anwendungsentwicklung in Google Cloud einrichten“ abschließen. Dabei lernen Sie, wie Sie eine speicherorientierte Cloud-Infrastruktur mithilfe der grundlegenden Funktionen der folgenden Technologien erstellen und verbinden: Cloud Storage, Identity and Access Management, Cloud Functions und Pub/Sub.
Die Kursreihe „Einführung in das Cloud-Computing von Google“ richtet sich an Personen mit wenigen bis gar keinen Vorkenntnissen oder Erfahrungen im Bereich Cloud-Computing. Sie bietet einen detaillierten Überblick über Cloud-Grundlagen, Big Data, maschinelles Lernen und die Rolle von Google Cloud in diesem Bereich. Am Ende der Kursreihe können Teilnehmende diese Konzepte erläutern und einige praktische Fähigkeiten demonstrieren. Die Kurse sollten in folgender Reihenfolge absolviert werden: 1. Einführung in das Cloud-Computing von Google: Cloud-Computing-Grundlagen 2. Einführung in das Cloud-Computing von Google: Infrastruktur in Google Cloud 3. Einführung in das Cloud-Computing von Google: Netzwerke und Sicherheit in Google Cloud 4. Einführung in das Cloud-Computing von Google: Daten, ML und KI in Google Cloud
Die Kursreihe „Einführung in das Cloud-Computing von Google“ richtet sich an Personen mit geringen oder gar keinen Vorkenntnissen oder Erfahrungen im Bereich Cloud Computing. Sie bietet einen detaillierten Überblick über Cloud-Grundlagen, Big Data, maschinelles Lernen und die Rolle von Google Cloud in diesem Bereich. Am Ende der Kursreihe können Teilnehmende diese Konzepte erläutern und einige praktische Fähigkeiten demonstrieren. Die Kurse sollten in folgender Reihenfolge absolviert werden: 1. Einführung in das Cloud-Computing von Google: Cloud-Computing-Grundlagen 2. Einführung in das Cloud-Computing von Google: Infrastruktur in Google Cloud 3. Einführung in das Cloud-Computing von Google: Netzwerke und Sicherheit in Google Cloud 4. Einführung in das Cloud-Computing von Google: Daten, ML und KI in Google Cloud Diese Kursreihe bietet einen Überblick über Cloud-Computing, verschiedene Nutzungsmöglichkeiten von Google Cloud und verschiedene Computing-Optionen.
Mit dem Skill-Logo zum Kurs Cloud Load Balancing in der Compute Engine implementieren weisen Sie Kenntnisse in folgenden Bereichen nach: virtuelle Maschinen in der Compute Engine erstellen und bereitstellen und Netzwerk- und Application Load Balancer konfigurieren.