Dhani Setiaji
Jest członkiem od 2020
Liga srebrna
5100 pkt.
Jest członkiem od 2020
Ukończ szkolenie wprowadzające Przygotowywanie danych do użycia z interfejsami ML w Google Cloud, aby zdobyć odznakę potwierdzającą zdobycie następujących umiejętności: czyszczenie danych przy użyciu usługi Dataprep firmy Trifacta, uruchamianie potoków danych w Dataflow, tworzenie klastrów i uruchamianie zadań Apache Spark w Dataproc, a także wywoływanie interfejsów API dotyczących uczenia maszynowego, w tym Cloud Natural Language API, Google Cloud Speech-to-Text API oraz Video Intelligence API.
Aby zdobyć odznakę umiejętności, ukończ szkolenie Budowanie bezpiecznej sieci Google Cloud, w trakcie którego poznasz różne związane z siecią zasoby do budowania, skalowania i zabezpieczania aplikacji w Google Cloud.
Earn a skill badge by completing the Build Interactive Apps with Google Assistant quest, where you will learn how to build Google Assistant applications, including how to: create an Actions project, integrate Dialogflow with an Actions project, test your application with Actions simulator, build an Assistant application with flash cards template, integrate customer MP3 files with your Assistant application, add Cloud Translation API to your Assistant application, and use APIs and integrate them into your applications. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge quest, and final assessment challenge lab, to receive a digital badge that you can share with your network.
W ramach tego kursu poznasz 4 dostępne architektury stron Google Cloud, dzięki czemu Twoja strona będzie dostępna i skalowalna. Jeśli ukończysz ten kurs wraz z Challenge Lab na końcu, otrzymasz cyfrową plakietkę Google Cloud. Challenge Lab nie zawiera dokładnych instrukcji – wymaga opracowania rozwiązań z minimalną pomocą, przez co sprawdza umiejętności użytkownika w zakresie technologii Google Cloud. Ten kurs jest oparty na serii materiałów wideo Get Cooking in Cloud.
Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML.
Complete the intermediate Implement DevOps Workflows in Google Cloud skill badge to demonstrate skills in the following: creating git repositories with Cloud Source Repositories, launching, managing, and scaling deployments on Google Kubernetes Engine (GKE), and architecting CI/CD pipelines that automate container image builds and deployments to GKE.
Aby zdobyć odznakę umiejętności, ukończ szkolenie Budowanie sieci w Google Cloud, w trakcie którego poznasz różne sposoby wdrażania i monitorowania aplikacji i dowiesz się, jak: przeglądać role uprawnień, dodawać/usuwać dostęp do projektu, tworzyć sieci VPC, wdrażać i monitorować maszyny wirtualne Compute Engine, pisać zapytania SQL oraz wdrażać aplikacje przy użyciu różnych metod w Kubernetes.
Earn a skill badge by completing the Automate Interactions with Contact Center AI quest, where you will learn about the features of Contact Center AI, including how to Build a virtual agent, Design conversation flows for your virtual agent; Add a phone gateway to your virtual agent; Use Dialogflow for troubleshooting; Review logs and debug your virtual agent. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge quest, and final assessment challenge lab, to receive a digital badge that you can share with your network.
Earn the advanced skill badge by completing the Use Machine Learning APIs on Google Cloud course, where you learn the basic features for the following machine learning and AI technologies: Cloud Vision API, Cloud Translation API, and Cloud Natural Language API.
Earn a skill badge by completing the Set Up a Google Cloud Network skill badge course, where you will learn how to perform basic networking tasks on Google Cloud Platform - create a custom network, add subnets firewall rules, then create VMs and test the latency when they communicate with each other.
Ukończ szkolenie wprowadzające Uzyskiwanie statystyk z danych BigQuery, aby zdobyć odznakę potwierdzającą zdobycie następujących umiejętności: pisanie zapytań SQL, tworzenie zapytań dotyczących tabel publicznych, wczytywanie przykładowych danych w BigQuery, naprawianie typowych błędów składniowych przy użyciu walidatora zapytań w BigQuery oraz tworzenie raportów w Looker Studio przez tworzenie połączenia z danymi BigQuery.
Earn a skill badge by completing the Explore Machine Learning Models with Explainable AI quest, where you will learn how to do the following using Explainable AI: build and deploy a model to an AI platform for serving (prediction), use the What-If Tool with an image recognition model, identify bias in mortgage data using the What-If Tool, and compare models using the What-If Tool to identify potential bias. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest and the final assessment challenge lab to receive a skill badge that you can share with your network.
This advanced-level Quest builds on its predecessor Quest, and offers hands-on practice on the more advanced data integration features available in Cloud Data Fusion, while sharing best practices to build more robust, reusable, dynamic pipelines. Learners get to try out the data lineage feature as well to derive interesting insights into their data’s history.
Want to build ML models in minutes instead of hours using just SQL? BigQuery ML democratizes machine learning by letting data analysts create, train, evaluate, and predict with machine learning models using existing SQL tools and skills. In this series of labs, you will experiment with different model types and learn what makes a good model.
Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.