Mario Amatucci
Учасник із 2020
Срібна ліга
Кількість балів: 31920
Учасник із 2020
Kubernetes is the most popular container orchestration system, and Google Kubernetes Engine was designed specifically to support managed Kubernetes deployments in Google Cloud. In this course, you will get hands-on practice configuring Docker images, containers, and deploying fully-fledged Kubernetes Engine applications.
In this course you will get hands-on in order to work through real-world challenges faced when building streaming data pipelines. The primary focus is on managing continuous, unbounded data with Google Cloud products.
In this Quest, the experienced user of Google Cloud will learn how to describe and launch cloud resources with Terraform, an open source tool that codifies APIs into declarative configuration files that can be shared amongst team members, treated as code, edited, reviewed, and versioned. In these nine hands-on labs, you will work with example templates and understand how to launch a range of configurations, from simple servers, through full load-balanced applications.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps developers build applications. You learn how to prompt Gemini to explain code, recommend Google Cloud services, and generate code for your applications. Using a hands-on lab, you experience how Gemini improves the application development workflow. Duet AI was renamed to Gemini, our next-generation model.
Що більше штучний інтелект і машинне навчання використовуються в корпоративних середовищах, то нагальнішою стає потреба розробити принципи відповідального ставлення до них. Однак говорити про принципи відповідального використання штучного інтелекту легше, ніж застосовувати їх на практиці. Цей курс допоможе вам дізнатись, як запровадити відповідальну роботу зі штучним інтелектом у вашій організації. У цьому курсі ви дізнаєтеся про підхід Google Cloud до відповідального використання ШІ, а також отримаєте практичні поради й набудете досвіду, який допоможе вам розробити власний підхід до цього завдання.
Щоб отримати кваліфікаційний значок, пройдіть курси "Introduction to Generative AI", "Introduction to Large Language Models" й "Introduction to Responsible AI". Пройшовши завершальний тест, ви підтвердите, що засвоїли основні поняття, які стосуються генеративного штучного інтелекту. Кваліфікаційний значок – це цифровий значок від платформи Google Cloud, який свідчить, що ви знаєтеся на продуктах і сервісах Google Cloud. Щоб опублікувати кваліфікаційний значок, зробіть свій профіль загальнодоступним, а також додайте значок у профіль у соціальних мережах.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Це ознайомлювальний курс мікронавчання, який має пояснити, що таке відповідальне використання штучного інтелекту, чому воно важливе і як компанія Google реалізує його у своїх продуктах. Крім того, у цьому курсі викладено 7 принципів Google щодо штучного інтелекту.
Recently, a McKinsey report found that Generative AI could add up to $4.4 trillion a year to the global economy, signaling an imminent surge in the demand for GenAI professionals. Now is the perfect time to get a head start and gain hands-on experience with Google Cloud's powerful GenAI tools and techniques, carefully designed to enhance your tech skills and set you on a promising course. Play now to be at the forefront of innovation, shaping the future with GenAI and earning your first Google Cloud GenAI game badge!
As employers increasingly seek data experts on a global scale to solve real-world problems, we want you to stay ahead of the curve by acquiring the latest and most in-demand data skills. Game on to showcase your talent to the world by earning your first Google Cloud Credential!
The beautiful game is changing, and data science is playing a big role. Teams are now using data to make better decisions about everything, from player recruitment to game strategy. We invite you to get hands-on experience on the fundamentals of sports data science no matter who you're cheering for! Use BigQuery ML to train advanced models to predict goals and evaluate performance. Learn new skills and get started towards earning your first Google Cloud Credential. No prior experience required.
У цьому ознайомлювальному курсі мікронавчання ви дізнаєтеся, що таке великі мовні моделі, де вони використовуються і як підвищити їх ефективність коригуванням запитів. Він також охоплює інструменти Google, які допоможуть вам створювати власні додатки на основі генеративного штучного інтелекту.
Це ознайомлювальний курс мікронавчання, який має пояснити, що таке генеративний штучний інтелект, як він використовується й чим відрізняється від традиційних методів машинного навчання. Він також охоплює інструменти Google, які допоможуть вам створювати власні додатки на основі генеративного штучногоінтелекту.
Welcome to Cloud Composer, where we discuss how to orchestrate data lake workflows with Cloud Composer.
Looking to build or optimize your data warehouse? Learn best practices to Extract, Transform, and Load your data into Google Cloud with BigQuery. In this series of interactive labs you will create and optimize your own data warehouse using a variety of large-scale BigQuery public datasets. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.
Earn a skill badge by completing the App Engine`:` 3 ways course, where you learn how to use App Engine with Python, Go, and PHP.
Під час курсу ви зможете ознайомитися з продуктами й сервісами Google Cloud для роботи з масивами даних і машинним навчанням, які підтримують життєвий цикл роботи з даними для тренування моделей штучного інтелекту. У курсі розглядаються процеси, проблеми й переваги створення конвеєру масиву даних і моделей машинного навчання з Vertex AI у Google Cloud.
This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.
Complete the intermediate Deploy Kubernetes Applications on Google Cloud skill badge course to demonstrate skills in the following: Configuring and building Docker container images.Creating and managing Google Kubernetes Engine (GKE) clusters.Utilizing kubectl for efficient cluster management.Deploying Kubernetes applications with robust continuous delivery (CD) practices.
This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.
This is the second course in the Data to Insights course series. Here we will cover how to ingest new external datasets into BigQuery and visualize them with Looker Studio. We will also cover intermediate SQL concepts like multi-table JOINs and UNIONs which will allow you to analyze data across multiple data sources. Note: Even if you have a background in SQL, there are BigQuery specifics (like handling query cache and table wildcards) that may be new to you. After completing this course, enroll in the Achieving Advanced Insights with BigQuery course.
Зараз усі говорять про масиви даних, машинне навчання й штучний інтелект, але це досить вузькоспеціалізовані теми, про які важко знайти матеріали, зрозумілі не лише спеціалістам. На щастя, Google Cloud пропонує зручні сервіси в цих галузях, а завдяки цьому вступному курсу ви зможете ознайомитися з такими інструментами, як BigQuery, Cloud Speech API і Video Intelligence.
In this course, we see what the common challenges faced by data analysts are and how to solve them with the big data tools on Google Cloud. You’ll pick up some SQL along the way and become very familiar with using BigQuery and Dataprep to analyze and transform your datasets. This is the first course of the From Data to Insights with Google Cloud series. After completing this course, enroll in the Creating New BigQuery Datasets and Visualizing Insights course.
Пройдіть вступний кваліфікаційний курс Налаштування Cloud Load Balancing для Compute Engine, щоб продемонструвати свої навички: створення й розгортання віртуальних машин у Compute Engine; налаштування мережі й розподілювачів навантаження додатків.
In this intermediate course, you will learn to design, build, and optimize robust batch data pipelines on Google Cloud. Moving beyond fundamental data handling, you will explore large-scale data transformations and efficient workflow orchestration, essential for timely business intelligence and critical reporting. Get hands-on practice using Dataflow for Apache Beam and Serverless for Apache Spark (Dataproc Serverless) for implementation, and tackle crucial considerations for data quality, monitoring, and alerting to ensure pipeline reliability and operational excellence. A basic knowledge of data warehousing, ETL/ELT, SQL, Python, and Google Cloud concepts is recommended.
Earn a Introductory skill badge by completing the Cloud Run functions: 3 Ways course, where you learn how to use Cloud Run functions through the Google Cloud console and on the command line.
There’s so much more to cloud security than making your passwords something other than “password”. As more and more businesses move their data and applications to the cloud, the importance of - and demand for - cloud security is growing exponentially. In fact, the demand for cloud security professionals is outpacing the supply: according to a report by Cybersecurity Ventures, there are roughly 3.5 million unfilled cybersecurity positions around the world in 2023. Unlock your cloud security potential with hands-on experience in the Arcade - each lab teaches and tests your growing tech skills, and sets you on the path to a Google Cloud credential.
Complete the introductory Monitoring in Google Cloud skill badge course to demonstrate skills in the following: using Cloud Monitoring tools to monitor resources on Google Cloud.
Complete the introductory Create a Secure Data Lake on Cloud Storage skill badge course to demonstrate skills in the following: securing and configuring a Cloud Storage bucket, using Gemini for text generation, managing IAM access control, and establishing a Dataplex lake for data governance.
Earn a skill badge by completing the Get Started with Eventarc skill badge course, where you use Eventarc to create event triggers for different resources including Pub/Sub topics and Cloud Storage buckets.
Earn a skill badge by completing the Get Started with Cloud Storage skill badge course, where you learn how to create a Cloud Storage bucket, how to use the Cloud Storage command line, and how to use Bucket Lock to protect objects in a bucket.
Earn a skill badge by completing the Analyze Speech and Language with Google APIs quest, where you learn how to use the Natural Language and Speech APIs in real-world settings.
The demand for data skills is growing rapidly, and we want you to get some of that sweet knowledge! According to a report by the McKinsey Global Institute, the demand for data scientists and analysts is expected to grow by 150% by 2025. Data can be used to identify trends, patterns, and insights that can help businesses improve their operations, products, and services - which makes data career paths highly valuable. There are a lot of different aspects to data science, so it's important to start with the basics - and we’ve got you covered. Kickstart your data skills discovery and get hands-on experience in the Arcade, with labs that help you learn and earn your first Google Cloud credential. No experience required.
Complete the introductory Get Started with Dataplex skill badge to demonstrate skills in the following: creating Dataplex assets, creating aspect types, and applying aspects to entries in Dataplex.
Earn a skill badge by completing the Create a Streaming Data Lake on Cloud Storage course, where you use Pub/Sub, Dataflow, and Cloud Storage together to create a streaming data lake on Google Cloud. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
Earn a skill badge by completing the Get Started with Looker skill badge course, where you learn how to analyze, visualize, and curate data using Looker Studio and Looker.