Erick Jara
Participante desde 2023
Liga Diamante
27229 pontos
Participante desde 2023
Este curso tem uma abordagem realista para o fluxo de trabalho de ML usando um estudo de caso em que uma equipe tem vários casos de uso e exigências comerciais em ML. Essa equipe precisa conhecer as ferramentas necessárias para a governança e o gerenciamento de dados e decidir a melhor abordagem para o processamento deles. A equipe terá três opções para criar modelos de ML em dois casos de uso. Neste curso, explicamos quando usar o AutoML, o BigQuery ML ou o treinamento personalizado para alcançar os objetivos.
Este curso ajuda a criar um plano de estudo para o exame de certificação Professional Machine Learning Engineer (PMLE). É possível conferir a amplitude e o escopo dos domínios abordados no exame. Os estudantes também podem acompanhar os preparativos para o exame e criar planos de estudo individuais.
As tecnologias de nuvem podem agregar muito valor a uma organização e, ao combinar esse poder com dados, o potencial de crescer e criar novas experiências para os clientes é ainda maior. O curso "Como é feita a transformação de dados com o Google Cloud" mostra como os dados agregam valor às organizações e como o Google Cloud torna esses dados eficientes e acessíveis. Este curso, que faz parte do programa de aprendizado do Líder digital do Cloud, se destina às pessoas que querem crescer na profissão e construir o futuro da empresa.
Este curso ajuda estudantes a criar um plano de estudo para o exame de certificação PDE (Professional Data Engineer). É possível conferir a amplitude e o escopo dos domínios abordados no exame. Os estudantes também podem acompanhar os preparativos para o exame e criar planos de estudos individuais.
O curso apresenta os benefícios de usar a Vertex AI Feature Store e ensina a melhorar a acurácia dos modelos de ML e a identificar as colunas de dados que apresentam os atributos mais úteis. Ele também oferece conteúdo teórico e laboratórios sobre engenharia de atributos com BigQuery ML, Keras e TensorFlow.
"Noções básicas do Google Cloud: infraestrutura principal" é uma apresentação da terminologia e de conceitos importantes para trabalhar com o Google Cloud. Usando vídeos e laboratórios práticos, o curso apresenta e compara vários serviços de armazenamento e computação do Google Cloud, além de ferramentas importantes para o gerenciamento de políticas e recursos.
Este curso ensina a criar modelos de ML com o TensorFlow e o Keras, melhorar a acurácia deles e desenvolver modelos para uso em escala.
O Gemini para Google Workspace é um complemento que acrescenta recursos de IA generativa à plataforma. Neste programa de aprendizado, você vai conhecer as principais funcionalidades do Gemini e como elas podem ser usadas para melhorar a produtividade e a eficiência no Google Workspace.
Conclua o selo de habilidade introdutório Implementação do Cloud Load Balancing no Compute Engine para demonstrar que você sabe: criar e implantar máquinas virtuais no Compute Engine; configurar balanceadores de carga de rede e de aplicativo.
As pessoas estão muito animadas com a tecnologia de nuvem e a transformação digital, mas também ainda têm muitas dúvidas. Exemplo: O que é a tecnologia de nuvem? O que significa transformação digital? Como a tecnologia de nuvem pode ajudar sua organização? Por onde começar? Se você já se questionou sobre isso, veio ao lugar certo. Este curso fornece uma visão geral dos tipos de oportunidades e desafios que as empresas encaram em suas jornadas de transformação digital. Se quiser saber mais sobre tecnologia de nuvem para se destacar no trabalho e ajudar a construir o futuro da sua empresa, este curso introdutório sobre transformação digital é para você. Este curso faz parte do programa de aprendizado do Líder digital do Cloud.
O curso começa com a seguinte discussão: como melhorar a qualidade dos dados e fazer uma análise exploratória deles? Descrevemos o AutoML na Vertex AI e como criar, treinar e implantar um modelo de ML sem escrever nenhuma linha de código. Você vai conhecer os benefícios do BigQuery ML. Depois vamos falar sobre como otimizar um modelo de machine learning (ML) e como a generalização e a amostragem podem ajudar na avaliação de qualidade dos modelos de ML em treinamentos personalizados.
Neste curso, apresentamos os recursos de IA e machine learning (ML) do Google Cloud, com foco no desenvolvimento de projetos de IA generativa e preditiva. Vamos conhecer as tecnologias, os produtos e as ferramentas disponíveis em todo o ciclo de vida de dados para IA, capacitando cientistas de dados, desenvolvedores de IA e engenheiros de ML para aprimorar a experiência com exercícios interativos.
Quanto maior é o uso da inteligência artificial empresarial e do machine learning, mais importante é desenvolvê-los de maneira responsável. Para muitos, falar sobre a IA responsável pode ser mais fácil, mas colocá-la em prática é um desafio. Se você tem interesse em aprender a operacionalizar a IA responsável na sua organização, este curso é para você. Nele, você vai aprender como o Google Cloud faz isso hoje, além de analisar práticas recomendadas e lições aprendidas, a fim de criar uma base para elaborar sua própria abordagem de IA responsável.
Receba um selo de habilidade ao concluir os cursos "Introduction to Generative AI", "Introduction to Large Language Models" e "Introduction to Responsible AI". Consiga a aprovação nos testes finais dos cursos para demonstrar seu conhecimento sobre os conceitos básicos da IA generativa. Os selos de habilidades são digitais. Eles são emitidos pelo Google Cloud como forma de reconhecer sua capacidade de trabalhar com os produtos e serviços do Cloud. Torne seu perfil público e adicione os selos de habilidades às suas mídias sociais para mostrar seus conhecimentos.
Este é um curso de microaprendizagem introdutório que busca explicar a IA responsável: o que é, qual é a importância dela e como ela é aplicada nos produtos do Google. Ele também contém os 7 princípios de IA do Google.
Este é um curso de microlearning de nível introdutório que explica o que são modelos de linguagem grandes (LLM), os casos de uso em que podem ser aplicados e como é possível fazer o ajuste de comandos para aprimorar o desempenho dos LLMs. O curso também aborda as ferramentas do Google que ajudam a desenvolver seus próprios apps de IA generativa.
Este é um curso de microaprendizagem introdutório que busca explicar a IA generativa: o que é, como é usada e por que ela é diferente de métodos tradicionais de machine learning. O curso também aborda as ferramentas do Google que ajudam você a desenvolver apps de IA generativa.