Ganhe o selo de habilidade avançado ao concluir o curso Usar APIs de machine learning no Google Cloud. Nele, você aprende os recursos básicos das seguintes tecnologias de machine learning e IA: API Cloud Vision, API Cloud Translation e API Cloud Natural Language. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência nos produtos e serviços do Cloud, comprovando sua capacidade de aplicar o conhecimento em um ambiente prático e interativo. Conclua este curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado com seus contatos.
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
In this course, you will learn about the various services Google Cloud offers for modernizing retail applications and infrastructure. Through a series of lecture content and hands-on labs, you will gain practical experience deploying cutting-edge retail and ecommerce solutions on Google Cloud.
Conquiste o selo de habilidade intermediário ao concluir o curso Como criar e implantar soluções de machine learning na Vertex AI. Nele você aprenderá a usar a plataforma Vertex AI, o AutoML e os serviços de treinamento personalizados para treinar, avaliar, ajustar, explicar e implantar modelos de machine learning. Esse curso com selo de habilidade é destinado a cientistas de dados e engenheiros de machine learning. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam sua habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua o curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado com sua rede.
Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on Google Cloud.
Conclua o treinamento e receba o selo de habilidade introdutório de "Criação de aplicativos de IA no mundo real com o Gemini e o Imagen". Com ele, você vai ser capaz de demonstrar as seguintes competências: reconhecimento de imagens, processamento de linguagem natural, geração de imagens usando os modelos avançados do Gemini e Imagen do Google e implantação de aplicativos na plataforma Vertex AI.
Este curso demonstra como usar modelos de ML/IA para tarefas generativas no BigQuery. Nele, você vai conhecer o fluxo de trabalho para solucionar um problema comercial com modelos do Gemini utilizando um caso de uso prático que envolve gestão de relacionamento com o cliente. Para facilitar a compreensão, o curso também proporciona instruções detalhadas de soluções de programação que usam consultas SQL e notebooks Python.
Este curso de nível introdutório mostra aos desenvolvedores de aplicativos como o ecossistema do Google Cloud facilita a criação de apps nativos da nuvem seguros, escalonáveis e inteligentes. Você vai aprender a desenvolver e escalonar aplicativos sem configurar uma infraestrutura, além de executar análises de dados, extrair insights dos dados e usar APIs de ML pré-treinadas para aproveitar os recursos de machine learning, mesmo se não for especialista no assunto. Também vamos mostrar como vários serviços do Google se integram perfeitamente a APIs para criar apps inteligentes.
Os cursos da Google Cloud Computing Foundations são direcionados para pessoas com pouca ou nenhuma formação ou experiência na área de computação em nuvem. Eles apresentam uma visão geral dos principais conceitos de nuvem, Big Data e machine learning, além de explicar onde e como usar o Google Cloud. Ao final da série de cursos, os alunos serão capazes de articular estes conceitos e demonstrar algumas habilidades práticas. Conclua os cursos na seguinte ordem: 1. Fundamentos da computação do Google Cloud: noções básicas da computação em nuvem 2. Fundamentos da computação do Google Cloud: infraestrutura no Google Cloud 3. Fundamentos da computação do Google Cloud: rede e segurança no Google Cloud 4. Fundamentos da computação do Google Cloud: dados, ML e IA no Google Cloud Este curso final da série analisa os serviços gerenciados de Big Data, machine learning e os benefícios dela, e como comprovar suas habilidades no Google Cloud ganhando selos de habilidade.
Conquiste o selo de habilidade introdutório Preparar dados para APIs de ML no Google Cloud para demonstrar que você é capaz de: limpar dados com o Dataprep by Trifacta, executar pipelines de dados no Dataflow, criar clusters e executar jobs do Apache Spark no Dataproc e chamar APIs de ML, incluindo as APIs Cloud Natural Language, Google Cloud Speech-to-Text e Video Intelligence.
Complete the introductory Get Started with Sensitive Data Protection skill badge course to demonstrate skills in the following: using Sensitive Data Protection services (including the Cloud Data Loss Prevention API) to inspect, redact, and de-identify sensitive data in Google Cloud.
Complete the introductory Secure BigLake Data skill badge course to demonstrate skills with IAM, BigQuery, BigLake, and Data Catalog within Dataplex to create and secure BigLake tables.
Neste curso, você vai entender como o Gemini, um colaborador com tecnologia de IA generativa do Google Cloud, ajuda a analisar os dados dos clientes e a prever as vendas de produtos. Além disso, você vai aprender a identificar, categorizar e desenvolver novos clientes usando seus dados no BigQuery. Usando laboratórios práticos, você vai descobrir como o Gemini melhora a análise de dados e os fluxos de trabalho de machine learning. A Duet AI agora é o Gemini, nosso modelo de última geração.
Ganhe um selo de habilidade ao concluir o curso Noções básicas do Google Cloud Compute, onde você aprende a trabalhar com máquinas virtuais (VMs), discos e servidores da Web usando o Compute Engine.
Neste curso, vamos conhecer o Gemini no BigQuery, um pacote de recursos com tecnologia de IA que auxilia no fluxo de trabalho de dados para inteligência artificial. Esses recursos incluem preparação e análise detalhada de dados, solução de problemas e geração de código, além da descoberta e visualização do fluxo de trabalho. Com explicações conceituais, um caso de uso prático e o laboratório, o curso ensina aos profissionais de dados como aumentar a produtividade e acelerar o pipeline de desenvolvimento.
Conclua o curso introdutório Criação de comandos na Vertex AI para: Demonstrar suas habilidades nas áreas de engenharia de comandos, análise de imagens e técnicas generativas multimodais na Vertex AI Descobrir como criar comandos eficientes, guiar as respostas da IA generativa e aplicar os modelos do Gemini em cenários reais de marketing.
A incorporação de machine learning em pipelines de dados aumenta a capacidade de extrair insights dessas informações. Neste curso, mostramos as várias formas de incluir essa tecnologia em pipelines de dados do Google Cloud. Para casos de pouca ou nenhuma personalização, vamos falar sobre o AutoML. Para usar recursos de machine learning mais personalizados, vamos apresentar os Notebooks e o machine learning do BigQuery (BigQuery ML). No curso, você também vai aprender sobre a produção de soluções de machine learning usando a Vertex AI.
Conclua o selo de habilidade intermediário Dados de engenharia para modelagem preditiva com o BigQuery ML para mostrar que você sabe: criar pipelines de transformação de dados no BigQuery usando o Dataprep by Trifacta; usar o Cloud Storage, o Dataflow e o BigQuery para criar fluxos de trabalho de extração, transformação e carregamento de dados (ELT); e criar modelos de machine learning usando o BigQuery ML.