Chargement...
Aucun résultat.

Mettez en pratique vos compétences dans la console Google Cloud

05

Building Batch Data Pipelines on Google Cloud

05

Building Batch Data Pipelines on Google Cloud

13 heures Intermédiaire

Data pipelines typically fall under one of the Extract and Load (EL), Extract, Load and Transform (ELT) or Extract, Transform and Load (ETL) paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.

Earn a badge today!

info
Informations sur le cours
Objectifs
  • Review different methods of data loading: EL, ELT and ETL and when to use what
  • Run Hadoop on Dataproc, leverage Cloud Storage, and optimize Dataproc jobs
  • Build your data processing pipelines using Dataflow
  • Manage data pipelines with Data Fusion and Cloud Composer
Prérequis

Experience with data modeling and ETL (extract, transform, load) activities.

Experience with developing applications by using a common programming language such as Python or Java.

Cible
Developers responsible for designing pipelines and architectures for data processing.
Langues disponibles
English, español (Latinoamérica), 日本語, français, português (Brasil), italiano et 한국어

La puissance des ateliers challenge

Vous pouvez désormais obtenir un badge de compétence sans avoir à suivre l'intégralité du cours. Si vous êtes sûr de vos compétences, passez directement à l'atelier challenge.

Aperçu