Analisar avaliações de clientes com o Gemini usando notebooks Python avaliações
6933 avaliações
Narayana M. · Revisado há about 1 year
good
sutrisno m. · Revisado há about 1 year
Indusara Darshana A. · Revisado há about 1 year
Utkarsh S. · Revisado há about 1 year
Nandi S. · Revisado há about 1 year
Prabhat G. · Revisado há about 1 year
Prabhat G. · Revisado há about 1 year
Prabhat G. · Revisado há about 1 year
Senthil K. · Revisado há about 1 year
Satyam K. · Revisado há about 1 year
Vinayak G. · Revisado há about 1 year
Omer B. · Revisado há about 1 year
lohau l. · Revisado há about 1 year
Abhijit G. · Revisado há about 1 year
"Create a Python notebook in BigQuery using Colab Enterprise. Create a Cloud Resource connection in BigQuery. Create the dataset and tables in BigQuery. Create the Gemini remote models in BigQuery. Prompt Gemini to analyze keywords and setiment (positive, or negative) for text based customer reviews. Generate a report with a count of positive, and negative reviews. Respond to customer reviews at scale. Create an application for customer service representatives to respond to audio based customer reviews."
Rehma I. · Revisado há about 1 year
CLOUD S. · Revisado há about 1 year
sathvika r. · Revisado há about 1 year
Siddharth G. · Revisado há about 1 year
just the connect alone already took more than 10 minutes to connect and the instructions didn't state which connect button as there's 2 connect buttons with top and bottom.
Wei Loon T. · Revisado há about 1 year
Pratham C. · Revisado há about 1 year
ANUJ R. · Revisado há about 1 year
Claudio C. · Revisado há about 1 year
Piyush J. · Revisado há about 1 year
Bibek C. · Revisado há about 1 year
Riya Y. · Revisado há about 1 year
Não garantimos que as avaliações publicadas sejam de consumidores que compraram ou usaram os produtos. As avaliações não são verificadas pelo Google.