关于“使用 TensorFlow Privacy 在机器学习中应用差分隐私”的评价
12712 条评价
하 유. · 已于 9 months前审核
용성 이. · 已于 9 months前审核
Charlie K. · 已于 9 months前审核
혁 이. · 已于 9 months前审核
Yuchieh Cheng 鄭宇傑 E. · 已于 9 months前审核
Leslie M. · 已于 9 months前审核
Sohyun K. · 已于 9 months前审核
123
Emir S. · 已于 9 months前审核
가현 이. · 已于 9 months前审核
euiseok l. · 已于 9 months前审核
영집 김. · 已于 9 months前审核
Introduction to the topic of Privacy Budget was useful. However, the lab would have been more effective if the lab adopted the following approach: 1) Train the model using Privacy Budget n 2) Test the results 3) Retrain the model using Privacy Budget n+delta 4) Test the results 5) Observe the difference in model behaviour between the model using Privacy Budget n vs the model behaviour using Privacy Budget n+delta This would allow the lab user to observe that a lower privacy budget bounds more tightly an adversary's ability to improve their guess.
Paul C. · 已于 9 months前审核
JONGIL P. · 已于 9 months前审核
선경 윤. · 已于 9 months前审核
Noe G. · 已于 9 months前审核
제형 전. · 已于 9 months前审核
강민영 강. · 已于 9 months前审核
YoonSeok N. · 已于 9 months前审核
Abhishek K. · 已于 9 months前审核
Jaewon C. · 已于 9 months前审核
stophobia G. · 已于 9 months前审核
인철 G. · 已于 9 months前审核
Amirlan S. · 已于 9 months前审核
Mayur G. · 已于 9 months前审核
easy
Kyeongseok K. · 已于 9 months前审核
我们无法确保发布的评价来自已购买或已使用产品的消费者。评价未经 Google 核实。