arrow_back

Gemini を使用した関数呼び出しの概要

ログイン 参加
700 以上のラボとコースにアクセス

Gemini を使用した関数呼び出しの概要

ラボ 1時間 universal_currency_alt クレジット: 5 show_chart 中級
info このラボでは、学習をサポートする AI ツールが組み込まれている場合があります。
700 以上のラボとコースにアクセス

GSP1227

Google Cloud セルフペース ラボのロゴ

概要

関数呼び出しを使用すると、デベロッパーはコード内に関数の説明を作成し、その説明をリクエストに含め言語モデルに渡すことができます。モデルからのレスポンスには、説明に対応する関数の名前と、その関数を呼び出す引数が含まれます。

関数呼び出しは、関数に関する情報を生成するという点で Vertex AI Extensions に似ています。両者の違いについて説明すると、関数呼び出しは関数の名前や、コードに使用する引数を含めて JSON データを返すのに対し、Vertex AI Extensions は関数を返して呼び出します。

Gemini

Gemini は、Google DeepMind が開発した強力な生成 AI モデルのファミリーであり、テキスト、コード、画像、音声、動画などのさまざまな形式のコンテンツを理解し、生成することができます。

Vertex AI の Gemini API

Vertex AI の Gemini API は、Gemini モデルを操作するための統合インターフェースを提供します。これにより、開発者は強力な AI 機能をアプリケーションに簡単に組み込むことができます。最新バージョンの詳細情報と具体的な機能については、Gemini の公式ドキュメントをご覧ください。

Gemini モデル

  • Gemini Pro: 複雑な推論向けに設計されており、次のようなことができます。
    • 膨大な量の情報の分析と要約。
    • 高度なクロスモーダル推論(テキスト、コード、画像など)。
    • 複雑なコードベースでの効果的な問題解決。
  • Gemini Flash: 速度と効率が向上するように最適化されており、以下を提供します。
    • 1 秒未満の応答時間と高スループット。
    • 高品質かつ低コストでの幅広いタスクの実行。
    • 空間理解の向上、新しい出力形式(テキスト、音声、画像)、ネイティブでのツール使用(Google 検索、コード実行、サードパーティ機能)など、強化されたマルチモーダル機能。

前提条件

このラボを開始する前に、以下について理解しておく必要があります。

  • 基本的な Python プログラミング。
  • 一般的な API のコンセプト。
  • Vertex AI Workbench の Jupyter ノートブックでの Python コードの実行。

目標

このラボでは、次の方法について学びます。

  • Google Gen AI SDK for Python をインストールする
  • Vertex AI の Gemini API を使用して Gemini 2.0 Flash(gemini-2.0-flash)モデルを操作し、以下を行う。
    • Google ストアの商品に関する情報をユーザーに提供するための関数呼び出しを、テキスト プロンプトから生成する
    • テキスト プロンプトから関数呼び出しを生成し、外部 API を呼び出して、住所をジオコーディングする
    • ログデータからエンティティを抽出するための関数呼び出しを、テキスト プロンプトから生成する

設定と要件

[ラボを開始] ボタンをクリックする前に

こちらの説明をお読みください。ラボには時間制限があり、一時停止することはできません。タイマーは、Google Cloud のリソースを利用できる時間を示しており、[ラボを開始] をクリックするとスタートします。

このハンズオンラボでは、シミュレーションやデモ環境ではなく実際のクラウド環境を使って、ラボのアクティビティを行います。そのため、ラボの受講中に Google Cloud にログインおよびアクセスするための、新しい一時的な認証情報が提供されます。

このラボを完了するためには、下記が必要です。

  • 標準的なインターネット ブラウザ(Chrome を推奨)
注: このラボの実行には、シークレット モード(推奨)またはシークレット ブラウジング ウィンドウを使用してください。これにより、個人アカウントと受講者アカウント間の競合を防ぎ、個人アカウントに追加料金が発生しないようにすることができます。
  • ラボを完了するための時間(開始後は一時停止できません)
注: このラボでは、受講者アカウントのみを使用してください。別の Google Cloud アカウントを使用すると、そのアカウントに料金が発生する可能性があります。

ラボを開始して Google Cloud コンソールにログインする方法

  1. [ラボを開始] ボタンをクリックします。ラボの料金をお支払いいただく必要がある場合は、表示されるダイアログでお支払い方法を選択してください。 左側の [ラボの詳細] ペインには、以下が表示されます。

    • [Google Cloud コンソールを開く] ボタン
    • 残り時間
    • このラボで使用する必要がある一時的な認証情報
    • このラボを行うために必要なその他の情報(ある場合)
  2. [Google Cloud コンソールを開く] をクリックします(Chrome ブラウザを使用している場合は、右クリックして [シークレット ウィンドウで開く] を選択します)。

    ラボでリソースがスピンアップし、別のタブで [ログイン] ページが表示されます。

    ヒント: タブをそれぞれ別のウィンドウで開き、並べて表示しておきましょう。

    注: [アカウントの選択] ダイアログが表示されたら、[別のアカウントを使用] をクリックします。
  3. 必要に応じて、下のユーザー名をコピーして、[ログイン] ダイアログに貼り付けます。

    {{{user_0.username | "Username"}}}

    [ラボの詳細] ペインでもユーザー名を確認できます。

  4. [次へ] をクリックします。

  5. 以下のパスワードをコピーして、[ようこそ] ダイアログに貼り付けます。

    {{{user_0.password | "Password"}}}

    [ラボの詳細] ペインでもパスワードを確認できます。

  6. [次へ] をクリックします。

    重要: ラボで提供された認証情報を使用する必要があります。Google Cloud アカウントの認証情報は使用しないでください。 注: このラボでご自身の Google Cloud アカウントを使用すると、追加料金が発生する場合があります。
  7. その後次のように進みます。

    • 利用規約に同意してください。
    • 一時的なアカウントなので、復元オプションや 2 要素認証プロセスは設定しないでください。
    • 無料トライアルには登録しないでください。

その後、このタブで Google Cloud コンソールが開きます。

注: Google Cloud のプロダクトやサービスにアクセスするには、ナビゲーション メニューをクリックするか、[検索] フィールドにサービス名またはプロダクト名を入力します。 ナビゲーション メニュー アイコンと検索フィールド

タスク 1. Vertex AI Workbench でノートブックを開く

  1. Google Cloud コンソールのナビゲーション メニューナビゲーション メニュー アイコン)で、[Vertex AI] > [ワークベンチ] の順にクリックします。

  2. インスタンスを見つけて、[JupyterLab を開く] ボタンをクリックします。

Workbench インスタンスの JupyterLab インターフェースが新しいブラウザタブで開きます。

注: JupyterLab にノートブックが表示されない場合は、次の追加手順でインスタンスを再設定してください。

1. JupyterLab のブラウザタブを閉じて、Workbench のホームページに戻ります。

2. インスタンス名の横にあるチェックボックスをオンにして、[リセット] をクリックします。

3. [JupyterLab を開く] ボタンが再度有効になったら、1 分待ってから [JupyterLab を開く] をクリックします。

タスク 2. ノートブックを設定する

  1. ファイルを開きます。

  2. [Select Kernel] ダイアログで、使用可能なカーネルのリストから [Python 3] を選択します。

  3. ノートブックの「Getting Started」(スタートガイド)セクションと「Import libraries」(ライブラリのインポート)セクションをすべて実行します。

    • [Project ID] に を使用し、[Location] に を使用します。
注: 「Colab only」(Colab のみ)と記載されているノートブック セルの実行は省略できます。 いずれかのノートブック セルの実行で 429 応答が返される場合は、1 分待ってから再度セルを実行し、次に進んでください。

以降のセクションでは、ノートブック セルの実行を通して、Vertex AI の Gemini API と Google Gen AI SDK for Python を使用する方法を見ていきます。

[進行状況を確認] をクリックして、目標に沿って進んでいることを確認します。 Gen AI SDK for Python をインストールしてライブラリをインポートする

タスク 3. 構造化された Google ストアクエリに関数呼び出しを使う

テキスト生成モデルを使用する場合、JSON などの構造化された形式での一貫したレスポンスを LLM に強制するのは難しいことがあります。関数呼び出しを使用すると、プロンプトや非構造化入力を通じて LLM を操作し、外部関数の呼び出しに使用できる構造化されたレスポンスを LLM が返すようにすることが容易になります。

関数呼び出しは、ユーザー プロンプトや関数定義から取得した構造化出力を使用して外部システムに API リクエストを送信し、関数のレスポンスを LLM に返してユーザーへのレスポンスを生成する方法と見なせます。つまり、Gemini の関数呼び出しは、ユーザーの非構造化テキストやメッセージから構造化パラメータを抽出できます。この例では、Gemini モデルのチャット モダリティとともに関数呼び出しを使用して、Google ストアの商品に関する情報をユーザーに提供します。

  1. このタスクでは、ノートブック セルの実行を通して Gemini モデルを使用し、Google ストアの商品に関する情報をユーザーに提供する方法を見ていきます。

[進行状況を確認] をクリックして、目標に沿って進んでいることを確認します。 シンプルな関数呼び出しを生成する

タスク 4. 関数呼び出しを使用して Maps API で住所をジオコーディングする

この例では、Gemini API のテキスト モダリティを使用して、複数のパラメータを入力として受け取る関数を定義します。その後、関数呼び出しのレスポンスを使用して、ライブ API 呼び出しを行い、住所を緯度と経度の座標に変換します。

  1. このタスクでは、ノートブック セルの実行を通して、Gemini Flash モデルを使用し、住所をジオコーディングする関数呼び出しを生成する方法を見ていきます。
ここでは、上記のノートブックを簡単に使って学べるようするために、OpenStreetMap Nominatim API を使用して住所をジオコーディングします。大量の地図や位置情報データを扱う場合は、Google Maps Geocoding API をご利用いただけます。

[進行状況を確認] をクリックして、目標に沿って進んでいることを確認します。 複雑な関数呼び出しを生成する

タスク 5. 関数呼び出しによるエンティティ抽出

これまでの例では、結果のパラメータを REST API またはクライアント ライブラリに渡すことを想定して、Gemini 関数呼び出しの中でエンティティ抽出機能を使用しました。一方で、Gemini 関数呼び出しでエンティティ抽出ステップのみを実行し、実際に API を呼び出さずに処理を停止したい場合があります。この機能は、非構造化テキストデータを構造化されたフィールドに変換する便利な方法と考えることができます。

この例では、未加工のログデータを受け取って、エラー メッセージの詳細を含む構造化データに変換するログ抽出ツールを作成します。

  1. このタスクでは、ノートブック セルの実行を通して、Gemini Flash モデルを使用して関数呼び出しを生成し、ログデータからエンティティを抽出する方法を見ていきます。

[進行状況を確認] をクリックして、目標に沿って進んでいることを確認します。 チャット プロンプトから関数呼び出しを生成する

お疲れさまでした

これで完了です。このラボでは、Vertex AI の Gemini API を使用してテキスト プロンプトから関数呼び出しを生成する方法について学びました。Gemini Flash モデルを使用して、関数呼び出しを生成しました。それらの関数は、Google ストアの商品に関する情報をユーザーに提供する、住所をジオコーディングする、およびログデータからエンティティを抽出するためのものでした。

次のステップと詳細情報

以下のリソースで Gemini に関する理解を深めましょう。

Google Cloud トレーニングと認定資格

Google Cloud トレーニングと認定資格を通して、Google Cloud 技術を最大限に活用できるようになります。必要な技術スキルとベスト プラクティスについて取り扱うクラスでは、学習を継続的に進めることができます。トレーニングは基礎レベルから上級レベルまであり、オンデマンド、ライブ、バーチャル参加など、多忙なスケジュールにも対応できるオプションが用意されています。認定資格を取得することで、Google Cloud テクノロジーに関するスキルと知識を証明できます。

マニュアルの最終更新日: 2025 年 5 月 14 日

ラボの最終テスト日: 2025 年 5 月 14 日

Copyright 2025 Google LLC. All rights reserved. Google および Google のロゴは Google LLC の商標です。その他すべての企業名および商品名はそれぞれ各社の商標または登録商標です。

始める前に

  1. ラボでは、Google Cloud プロジェクトとリソースを一定の時間利用します
  2. ラボには時間制限があり、一時停止機能はありません。ラボを終了した場合は、最初からやり直す必要があります。
  3. 画面左上の [ラボを開始] をクリックして開始します

シークレット ブラウジングを使用する

  1. ラボで使用するユーザー名パスワードをコピーします
  2. プライベート モードで [コンソールを開く] をクリックします

コンソールにログインする

    ラボの認証情報を使用して
  1. ログインします。他の認証情報を使用すると、エラーが発生したり、料金が発生したりする可能性があります。
  2. 利用規約に同意し、再設定用のリソースページをスキップします
  3. ラボを終了する場合や最初からやり直す場合を除き、[ラボを終了] はクリックしないでください。クリックすると、作業内容がクリアされ、プロジェクトが削除されます

このコンテンツは現在ご利用いただけません

利用可能になりましたら、メールでお知らせいたします

ありがとうございます。

利用可能になりましたら、メールでご連絡いたします

1 回に 1 つのラボ

既存のラボをすべて終了して、このラボを開始することを確認してください

シークレット ブラウジングを使用してラボを実行する

このラボの実行には、シークレット モードまたはシークレット ブラウジング ウィンドウを使用してください。これにより、個人アカウントと受講者アカウントの競合を防ぎ、個人アカウントに追加料金が発生することを防ぎます。