Acesse mais de 700 laboratórios e cursos

Classificar imagens com as redes neurais convolucionais do TensorFlow

Laboratório 1 hora 15 minutos universal_currency_alt 5 créditos show_chart Intermediário
info Este laboratório pode incorporar ferramentas de IA para ajudar no seu aprendizado.
Acesse mais de 700 laboratórios e cursos

GSP633

Logotipo dos laboratórios autoguiados do Google Cloud

Visão geral

Uma convolução é um filtro que passa por uma imagem, a processa e extrai atributos que têm alguma semelhança na imagem. Uma rede neural convolucional (CNN, na sigla em inglês) é um tipo de rede neural profunda (DNN, na sigla em inglês) aplicada com mais frequência a imagens.

Neste laboratório, você terá acesso a um modelo de classificação de imagens desenvolvido a partir de ferramentas de visão computacional, e depois usará as CNNs para melhorá-lo. Você usará os dados (itens de vestuário) de um conjunto de dados comum chamado Fashion MNIST.

Objetivos

Neste laboratório, você vai aprender a:

  • Analisar o modelo inicial
  • Adicionar convoluções, coletar dados e definir o modelo
  • Compilar e treinar o modelo
  • Ver as convoluções e o pooling

Pré-requisitos

Para maximizar seu aprendizado, conclua estes laboratórios antes:

Configuração e requisitos

Antes de clicar no botão Começar o Laboratório

Leia estas instruções. Os laboratórios são cronometrados e não podem ser pausados. O timer é ativado quando você clica em Iniciar laboratório e mostra por quanto tempo os recursos do Google Cloud vão ficar disponíveis.

Este laboratório prático permite que você realize as atividades em um ambiente real de nuvem, e não em uma simulação ou demonstração. Você vai receber novas credenciais temporárias para fazer login e acessar o Google Cloud durante o laboratório.

Confira os requisitos para concluir o laboratório:

  • Acesso a um navegador de Internet padrão (recomendamos o Chrome).
Observação: para executar este laboratório, use o modo de navegação anônima (recomendado) ou uma janela anônima do navegador. Isso evita conflitos entre sua conta pessoal e de estudante, o que poderia causar cobranças extras na sua conta pessoal.
  • Tempo para concluir o laboratório: não se esqueça que, depois de começar, não será possível pausar o laboratório.
Observação: use apenas a conta de estudante neste laboratório. Se usar outra conta do Google Cloud, você poderá receber cobranças nela.

Como iniciar seu laboratório e fazer login no console do Google Cloud

  1. Clique no botão Começar o laboratório. Se for preciso pagar por ele, uma caixa de diálogo vai aparecer para você selecionar a forma de pagamento. No painel Detalhes do Laboratório, à esquerda, você vai encontrar o seguinte:

    • O botão Abrir Console do Google Cloud
    • O tempo restante
    • As credenciais temporárias que você vai usar neste laboratório
    • Outras informações, se forem necessárias
  2. Se você estiver usando o navegador Chrome, clique em Abrir console do Google Cloud ou clique com o botão direito do mouse e selecione Abrir link em uma janela anônima.

    O laboratório ativa os recursos e depois abre a página Fazer Login em outra guia.

    Dica: coloque as guias em janelas separadas lado a lado.

    Observação: se aparecer a caixa de diálogo Escolher uma conta, clique em Usar outra conta.
  3. Se necessário, copie o Nome de usuário abaixo e cole na caixa de diálogo Fazer login.

    {{{user_0.username | "Username"}}}

    Você também encontra o nome de usuário no painel Detalhes do Laboratório.

  4. Clique em Próxima.

  5. Copie a Senha abaixo e cole na caixa de diálogo de Olá.

    {{{user_0.password | "Password"}}}

    Você também encontra a senha no painel Detalhes do Laboratório.

  6. Clique em Próxima.

    Importante: você precisa usar as credenciais fornecidas no laboratório, e não as da sua conta do Google Cloud. Observação: se você usar sua própria conta do Google Cloud neste laboratório, é possível que receba cobranças adicionais.
  7. Acesse as próximas páginas:

    • Aceite os Termos e Condições.
    • Não adicione opções de recuperação nem autenticação de dois fatores (porque essa é uma conta temporária).
    • Não se inscreva em testes gratuitos.

Depois de alguns instantes, o console do Google Cloud será aberto nesta guia.

Observação: para acessar os produtos e serviços do Google Cloud, clique no Menu de navegação ou digite o nome do serviço ou produto no campo Pesquisar. Ícone do menu de navegação e campo de pesquisa

Ativar o Cloud Shell

O Cloud Shell é uma máquina virtual com várias ferramentas de desenvolvimento. Ele tem um diretório principal permanente de 5 GB e é executado no Google Cloud. O Cloud Shell oferece acesso de linha de comando aos recursos do Google Cloud.

  1. Clique em Ativar o Cloud Shell Ícone "Ativar o Cloud Shell" na parte de cima do console do Google Cloud.

  2. Clique nas seguintes janelas:

    • Continue na janela de informações do Cloud Shell.
    • Autorize o Cloud Shell a usar suas credenciais para fazer chamadas de APIs do Google Cloud.

Depois de se conectar, você verá que sua conta já está autenticada e que o projeto está configurado com seu Project_ID, . A saída contém uma linha que declara o projeto PROJECT_ID para esta sessão:

Your Cloud Platform project in this session is set to {{{project_0.project_id | "PROJECT_ID"}}}

A gcloud é a ferramenta de linha de comando do Google Cloud. Ela vem pré-instalada no Cloud Shell e aceita preenchimento com tabulação.

  1. (Opcional) É possível listar o nome da conta ativa usando este comando:
gcloud auth list
  1. Clique em Autorizar.

Saída:

ACTIVE: * ACCOUNT: {{{user_0.username | "ACCOUNT"}}} To set the active account, run: $ gcloud config set account `ACCOUNT`
  1. (Opcional) É possível listar o ID do projeto usando este comando:
gcloud config list project

Saída:

[core] project = {{{project_0.project_id | "PROJECT_ID"}}} Observação: consulte a documentação completa da gcloud no Google Cloud no guia de visão geral da gcloud CLI.

Tarefa 1: abrir o notebook no Vertex AI Workbench

  1. No menu de navegação (Ícone do menu de navegação) do console do Google Cloud, clique em Vertex AI > Workbench.

  2. Ache a instância e clique no botão Abrir o JupyterLab.

A interface do JupyterLab para sua instância do Workbench é aberta em uma nova guia do navegador.

Observação: se você não encontrar notebooks no JupyterLab, siga estas etapas para redefinir a instância:

1. Feche a guia do JupyterLab no navegador e volte à página inicial do Workbench.

2. Marque a caixa de seleção ao lado do nome da instância e clique em Redefinir.

3. Depois que o botão Abrir o JupyterLab for ativado novamente, aguarde um minuto e clique em Abrir o JupyterLab.

Tarefa 2: executar o notebook do laboratório

  1. No menu à esquerda, abra .

  2. Na caixa de diálogo Selecionar kernel, escolha TensorFlow 2-11 (Local) na lista de opções disponíveis.

  3. Modifique o notebook para incluir sua região na célula 8. Essa informação está disponível no painel à esquerda das instruções do laboratório.

f639ae583bb66744.png
  1. Continue o laboratório no notebook e clique no ícone Executar (run-button.png) na parte de cima da tela para cada célula. Você também pode pressionar SHIFT + ENTER para executar o código na célula.

Leia o conteúdo para entender o que está ocorrendo em cada célula.

Para conferir o status do treinamento e da implantação na Vertex AI, siga as instruções no notebook, que contém ilustrações.

Acompanhar o progresso no notebook

Crie um bucket do Cloud Storage

Clique em Verificar meu progresso para saber se o bucket foi criado. Criar um bucket do Cloud Storage

Treinar o modelo na Vertex AI

Clique em Verificar meu progresso para conferir o objetivo. Treinar o modelo na Vertex AI

Implante o modelo

Clique em Verificar meu progresso para conferir o objetivo. Implantar o modelo

Parabéns!

Chegamos ao fim do laboratório autoguiado "Classificar imagens com as redes neurais convolucionais do TensorFlow". Você iniciou o notebook e conheceu as convoluções e o pooling.

Próximas etapas / Saiba mais

Treinamento e certificação do Google Cloud

Esses treinamentos ajudam você a aproveitar as tecnologias do Google Cloud ao máximo. Nossas aulas incluem habilidades técnicas e práticas recomendadas para ajudar você a alcançar rapidamente o nível esperado e continuar sua jornada de aprendizado. Oferecemos treinamentos que vão do nível básico ao avançado, com opções de aulas virtuais, sob demanda e por meio de transmissões ao vivo para que você possa encaixá-las na correria do seu dia a dia. As certificações validam sua experiência e comprovam suas habilidades com as tecnologias do Google Cloud.

Manual atualizado em 23 de abril de 2025

Laboratório testado em 23 de abril de 2025

Copyright 2025 Google LLC. Todos os direitos reservados. Google e o logotipo do Google são marcas registradas da Google LLC. Todos os outros nomes de produtos e empresas podem ser marcas registradas das respectivas empresas a que estão associados.

Antes de começar

  1. Os laboratórios criam um projeto e recursos do Google Cloud por um período fixo
  2. Os laboratórios têm um limite de tempo e não têm o recurso de pausa. Se você encerrar o laboratório, vai precisar recomeçar do início.
  3. No canto superior esquerdo da tela, clique em Começar o laboratório

Usar a navegação anônima

  1. Copie o nome de usuário e a senha fornecidos para o laboratório
  2. Clique em Abrir console no modo anônimo

Fazer login no console

  1. Faça login usando suas credenciais do laboratório. Usar outras credenciais pode causar erros ou gerar cobranças.
  2. Aceite os termos e pule a página de recursos de recuperação
  3. Não clique em Terminar o laboratório a menos que você tenha concluído ou queira recomeçar, porque isso vai apagar seu trabalho e remover o projeto

Este conteúdo não está disponível no momento

Você vai receber uma notificação por e-mail quando ele estiver disponível

Ótimo!

Vamos entrar em contato por e-mail se ele ficar disponível

Um laboratório por vez

Confirme para encerrar todos os laboratórios atuais e iniciar este

Use a navegação anônima para executar o laboratório

Para executar este laboratório, use o modo de navegação anônima ou uma janela anônima do navegador. Isso evita conflitos entre sua conta pessoal e a conta de estudante, o que poderia causar cobranças extras na sua conta pessoal.