关于“Serverless Data Processing with Dataflow - Using Dataflow SQL for Batch Analytics (Java)”的评价
正在加载…
未找到任何结果。

Google Cloud Skills Boost

在 Google Cloud 控制台中运用您的技能

关于“Serverless Data Processing with Dataflow - Using Dataflow SQL for Batch Analytics (Java)”的评价

评论

levi a. · 评论over 1 year之前

levi a. · 评论over 1 year之前

Looks the steps are not in order. Something is missing to complete the lab

Kishore C. · 评论over 1 year之前

JAQUELINE R. · 评论over 1 year之前

Looks the steps are not in order. Something is missing to complete this lab

Kishore C. · 评论over 1 year之前

Md Amir R. · 评论over 1 year之前

sreehari R. · 评论over 1 year之前

Priyank G. · 评论over 1 year之前

Yashkumar S. · 评论over 1 year之前

Anjaneyareddy G. · 评论over 1 year之前

Hemant K. · 评论over 1 year之前

Bryan G. · 评论over 1 year之前

# Set up environment variables export PROJECT_ID=$(gcloud config get-value project) export REGION='us-central1' export BUCKET=gs://${PROJECT_ID} export PIPELINE_FOLDER=${BUCKET} export MAIN_CLASS_NAME=com.mypackage.pipeline.BatchMinuteTrafficSQLPipeline export RUNNER=DataflowRunner export INPUT_PATH=${PIPELINE_FOLDER}/events.json export TABLE_NAME=${PROJECT_ID}:logs.minute_traffic cd $BASE_DIR mvn compile exec:java \ -Dexec.mainClass=${MAIN_CLASS_NAME} \ -Dexec.cleanupDaemonThreads=false \ -Dexec.args=" \ --project=${PROJECT_ID} \ --region=${REGION} \ --stagingLocation=${PIPELINE_FOLDER}/staging \ --tempLocation=${PIPELINE_FOLDER}/temp \ --runner=${RUNNER} \ --inputPath=${INPUT_PATH} \ --tableName=${TABLE_NAME}"

Andres Felipe G. · 评论over 1 year之前

Samson O. · 评论over 1 year之前

Andrey G. · 评论over 1 year之前

Naveen S. · 评论over 1 year之前

Lakshanaa G. · 评论over 1 year之前

Earl D. · 评论over 1 year之前

Serhii Z. · 评论over 1 year之前

Imre L. · 评论over 1 year之前

Andre L. · 评论over 1 year之前

J. Abraham F. · 评论over 1 year之前

LTI S. · 评论over 1 year之前

Nassim L. · 评论over 1 year之前

Vishal M. · 评论over 1 year之前

我们无法确保发布的评价来自已购买或已使用产品的消费者。评价未经 Google 核实。