关于“Serverless Data Processing with Dataflow - Using Dataflow SQL for Batch Analytics (Java)”的评价
正在加载…
未找到任何结果。

Google Cloud Skills Boost

在 Google Cloud 控制台中运用您的技能

关于“Serverless Data Processing with Dataflow - Using Dataflow SQL for Batch Analytics (Java)”的评价

3684 条评价

levi a. · 已于 over 1 year前审核

levi a. · 已于 over 1 year前审核

Looks the steps are not in order. Something is missing to complete the lab

Kishore C. · 已于 over 1 year前审核

JAQUELINE R. · 已于 over 1 year前审核

Looks the steps are not in order. Something is missing to complete this lab

Kishore C. · 已于 over 1 year前审核

Md Amir R. · 已于 over 1 year前审核

sreehari R. · 已于 over 1 year前审核

Priyank G. · 已于 over 1 year前审核

Yashkumar S. · 已于 over 1 year前审核

Anjaneyareddy G. · 已于 over 1 year前审核

Hemant K. · 已于 over 1 year前审核

Bryan G. · 已于 over 1 year前审核

# Set up environment variables export PROJECT_ID=$(gcloud config get-value project) export REGION='us-central1' export BUCKET=gs://${PROJECT_ID} export PIPELINE_FOLDER=${BUCKET} export MAIN_CLASS_NAME=com.mypackage.pipeline.BatchMinuteTrafficSQLPipeline export RUNNER=DataflowRunner export INPUT_PATH=${PIPELINE_FOLDER}/events.json export TABLE_NAME=${PROJECT_ID}:logs.minute_traffic cd $BASE_DIR mvn compile exec:java \ -Dexec.mainClass=${MAIN_CLASS_NAME} \ -Dexec.cleanupDaemonThreads=false \ -Dexec.args=" \ --project=${PROJECT_ID} \ --region=${REGION} \ --stagingLocation=${PIPELINE_FOLDER}/staging \ --tempLocation=${PIPELINE_FOLDER}/temp \ --runner=${RUNNER} \ --inputPath=${INPUT_PATH} \ --tableName=${TABLE_NAME}"

Andres Felipe G. · 已于 over 1 year前审核

Samson O. · 已于 over 1 year前审核

Andrey G. · 已于 over 1 year前审核

Naveen S. · 已于 over 1 year前审核

Lakshanaa G. · 已于 over 1 year前审核

Earl D. · 已于 over 1 year前审核

Serhii Z. · 已于 over 1 year前审核

Imre L. · 已于 over 1 year前审核

Andre L. · 已于 over 1 year前审核

J. Abraham F. · 已于 over 1 year前审核

LTI S. · 已于 over 1 year前审核

Nassim L. · 已于 over 1 year前审核

Vishal M. · 已于 over 1 year前审核

我们无法确保发布的评价来自已购买或已使用产品的消费者。评价未经 Google 核实。