关于“[DEPRECATED] Training and Deploying a TensorFlow Model in Vertex AI”的评价

评论

David Augusto V. · 评论over 1 year之前

Sumit V. · 评论over 1 year之前

Roman P. · 评论over 1 year之前

Not found: Table qwiklabs-gcp-02-e77c5ac0c12c:online_retail.online_retail_clv_raw

Oliver H. · 评论over 1 year之前

Adriel Y. · 评论over 1 year之前

falta mayor explicacion

SAZO V. · 评论over 1 year之前

There were some steps that caused errors - graphviz was not installed; the machine size was wrong in the code.

Michael W. · 评论over 1 year之前

ALFONSO A. · 评论over 1 year之前

Vyom S. · 评论over 1 year之前

German i. · 评论over 1 year之前

Yevhenii O. · 评论over 1 year之前

code gave me errors

Hye Y. · 评论over 1 year之前

Vik D. · 评论over 1 year之前

the code notebook got error

Joe G. · 评论over 1 year之前

Sebastián A. · 评论over 1 year之前

error code

swapna s. · 评论over 1 year之前

swapna s. · 评论over 1 year之前

Paramita C. · 评论over 1 year之前

a quota metric made fail the training and I was unable to complete all steps

Andrea M. · 评论over 1 year之前

Sean p. · 评论over 1 year之前

Code did not run.

Arpit D. · 评论over 1 year之前

GIRISH KUMAR S. · 评论over 1 year之前

Ajit K. · 评论over 1 year之前

buggy.. i cant finish the lab.. import tensorflow as tf NotFoundError: /home/jupyter/.local/lib/python3.9/site-packages/tensorflow/core/kernels/libtfkernel_sobol_op.so: undefined symbol: _ZNK10tensorflow8OpKernel11TraceStringB5cxx11ERKNS_15OpKernelContextEb File /opt/conda/lib/python3.9/site-packages/pydot.py:1863, in Dot.create(self, prog, format, encoding) 1856 p = subprocess.Popen( 1857 cmdline, 1858 env=env, 1859 cwd=tmp_dir, 1860 shell=False, 1861 stderr=subprocess.PIPE, stdout=subprocess.PIPE) 1862 except OSError as e: -> 1863 if e.errno == os.errno.ENOENT: 1864 args = list(e.args) 1865 args[1] = '"{prog}" not found in path.'.format( 1866 prog=prog) AttributeError: module 'os' has no attribute 'errno' ------ RuntimeError: Training failed with: code: 8 message: "The following quota metrics exceed quota limits: aiplatform.googleapis.com/custom_model_training_c2_cpus"

Chiu Yat T. · 评论over 1 year之前

我们无法确保发布的评价来自已购买或已使用产品的消费者。评价未经 Google 核实。