Introduzione all'API sequenziale Keras su Vertex AI Platform recensioni
13408 recensioni
Nurlan М. · Recensione inserita 5 mesi fa
Bikram S. · Recensione inserita 5 mesi fa
Miras C. · Recensione inserita 5 mesi fa
Keiven T. · Recensione inserita 5 mesi fa
Andrea C. · Recensione inserita 5 mesi fa
Damir M. · Recensione inserita 5 mesi fa
Kazushige O. · Recensione inserita 5 mesi fa
David Israel P. · Recensione inserita 5 mesi fa
Scott B. · Recensione inserita 5 mesi fa
Oscar R. · Recensione inserita 5 mesi fa
Benhur O. · Recensione inserita 5 mesi fa
Shankar M. · Recensione inserita 5 mesi fa
Amina Z. · Recensione inserita 5 mesi fa
Abhra D. · Recensione inserita 5 mesi fa
Abhilasa S. · Recensione inserita 5 mesi fa
Nils G. · Recensione inserita 5 mesi fa
File /opt/conda/lib/python3.10/site-packages/google/cloud/aiplatform/models.py:1827, in Endpoint._deploy_call(cls, api_client, endpoint_resource_name, model, endpoint_resource_traffic_split, network, deployed_model_display_name, traffic_percentage, traffic_split, machine_type, min_replica_count, max_replica_count, accelerator_type, accelerator_count, tpu_topology, service_account, explanation_spec, metadata, deploy_request_timeout, autoscaling_target_cpu_utilization, autoscaling_target_accelerator_duty_cycle, enable_access_logging, disable_container_logging, deployment_resource_pool) 1815 operation_future = api_client.deploy_model( 1816 endpoint=endpoint_resource_name, 1817 deployed_model=deployed_model, (...) 1820 timeout=deploy_request_timeout, 1821 ) 1823 _LOGGER.log_action_started_against_resource_with_lro( 1824 "Deploy", "model", cls, operation_future 1825 ) -> 1827 operation_future.result(timeout=None) File /opt/conda/lib/python3.10/site-packages/google/api_core/future/polling.py:261, in PollingFuture.result(self, timeout, retry, polling) 256 self._blocking_poll(timeout=timeout, retry=retry, polling=polling) 258 if self._exception is not None: 259 # pylint: disable=raising-bad-type 260 # Pylint doesn't recognize that this is valid in this case. --> 261 raise self._exception 263 return self._result FailedPrecondition: 400 Model server exited unexpectedly. Model server logs can be found at https://console.cloud.google.com/logs/viewer?project=667152570772&resource=aiplatform.googleapis.com%2FEndpoint&advancedFilter=resource.type%3D%22aiplatform.googleapis.com%2FEndpoint%22%0Aresource.labels.endpoint_id%3D%225927820128572932096%22%0Aresource.labels.location%3D%22us-central1%22.
Goziem M. · Recensione inserita 5 mesi fa
could be easier if there was more time since deploy part takes long
Mona H. · Recensione inserita 5 mesi fa
Islam A. · Recensione inserita 5 mesi fa
MACHINE_TYPE = "e2-standard-2" endpoint = uploaded_model.deploy( machine_type=MACHINE_TYPE, accelerator_type=None, accelerator_count=None, ) ne marche pas correctement
Timothé L. · Recensione inserita 5 mesi fa
Llorenç V. · Recensione inserita 5 mesi fa
Wonseuk H. · Recensione inserita 5 mesi fa
Pablo G. · Recensione inserita 5 mesi fa
Deploy really slow
Francesca A. · Recensione inserita 5 mesi fa
Anísio P. · Recensione inserita 5 mesi fa
Non garantiamo che le recensioni pubblicate provengano da consumatori che hanno acquistato o utilizzato i prodotti. Le recensioni non sono verificate da Google.