Introducing the Keras Sequential API on Vertex AI Platform Ulasan
Memuat…
Tidak ditemukan hasil.

Google Cloud Skills Boost

Terapkan keterampilan Anda di Konsol Google Cloud

Introducing the Keras Sequential API on Vertex AI Platform Ulasan

13397 ulasan

Shankar M. · Diulas 5 bulan lalu

Amina Z. · Diulas 5 bulan lalu

Abhra D. · Diulas 5 bulan lalu

Abhilasa S. · Diulas 5 bulan lalu

Nils G. · Diulas 5 bulan lalu

File /opt/conda/lib/python3.10/site-packages/google/cloud/aiplatform/models.py:1827, in Endpoint._deploy_call(cls, api_client, endpoint_resource_name, model, endpoint_resource_traffic_split, network, deployed_model_display_name, traffic_percentage, traffic_split, machine_type, min_replica_count, max_replica_count, accelerator_type, accelerator_count, tpu_topology, service_account, explanation_spec, metadata, deploy_request_timeout, autoscaling_target_cpu_utilization, autoscaling_target_accelerator_duty_cycle, enable_access_logging, disable_container_logging, deployment_resource_pool) 1815 operation_future = api_client.deploy_model( 1816 endpoint=endpoint_resource_name, 1817 deployed_model=deployed_model, (...) 1820 timeout=deploy_request_timeout, 1821 ) 1823 _LOGGER.log_action_started_against_resource_with_lro( 1824 "Deploy", "model", cls, operation_future 1825 ) -> 1827 operation_future.result(timeout=None) File /opt/conda/lib/python3.10/site-packages/google/api_core/future/polling.py:261, in PollingFuture.result(self, timeout, retry, polling) 256 self._blocking_poll(timeout=timeout, retry=retry, polling=polling) 258 if self._exception is not None: 259 # pylint: disable=raising-bad-type 260 # Pylint doesn't recognize that this is valid in this case. --> 261 raise self._exception 263 return self._result FailedPrecondition: 400 Model server exited unexpectedly. Model server logs can be found at https://console.cloud.google.com/logs/viewer?project=667152570772&resource=aiplatform.googleapis.com%2FEndpoint&advancedFilter=resource.type%3D%22aiplatform.googleapis.com%2FEndpoint%22%0Aresource.labels.endpoint_id%3D%225927820128572932096%22%0Aresource.labels.location%3D%22us-central1%22.

Goziem M. · Diulas 5 bulan lalu

could be easier if there was more time since deploy part takes long

Mona H. · Diulas 5 bulan lalu

Islam A. · Diulas 5 bulan lalu

MACHINE_TYPE = "e2-standard-2" endpoint = uploaded_model.deploy( machine_type=MACHINE_TYPE, accelerator_type=None, accelerator_count=None, ) ne marche pas correctement

Timothé L. · Diulas 5 bulan lalu

Llorenç V. · Diulas 5 bulan lalu

Wonseuk H. · Diulas 5 bulan lalu

Pablo G. · Diulas 5 bulan lalu

Deploy really slow

Francesca A. · Diulas 5 bulan lalu

Anísio P. · Diulas 5 bulan lalu

Kamel S. · Diulas 5 bulan lalu

Cesare C. · Diulas 5 bulan lalu

Goziem M. · Diulas 5 bulan lalu

Rajesh A. · Diulas 5 bulan lalu

Damir I. · Diulas 5 bulan lalu

Glorimar T. · Diulas 5 bulan lalu

y

Goziem M. · Diulas 5 bulan lalu

Thamu M. · Diulas 5 bulan lalu

need tensorflow package..more than just pip install tensorflow

Jerry Y. · Diulas 5 bulan lalu

Bret L. · Diulas 5 bulan lalu

Bret L. · Diulas 5 bulan lalu

Kami tidak dapat memastikan bahwa ulasan yang dipublikasikan berasal dari konsumen yang telah membeli atau menggunakan produk terkait. Ulasan tidak diverifikasi oleh Google.