关于“Performing Basic Feature Engineering in Keras”的评价
正在加载…
未找到任何结果。

在 Google Cloud 控制台中运用您的技能

关于“Performing Basic Feature Engineering in Keras”的评价

10038 条评价

Jinay J. · 已于 over 1 year前审核

Aki R. · 已于 over 1 year前审核

Gustavo R. · 已于 over 1 year前审核

Not updated, install scikit-learn, should seed both the lab and solution.

Guang Jun . · 已于 over 1 year前审核

Man L. · 已于 over 1 year前审核

Elvira S. · 已于 over 1 year前审核

Hrutik P. · 已于 over 1 year前审核

This lab was pretty bad to be honest. Many of the parts we're expected to fill in were not really covered (e.g., defining a function within a function for scaling the data seems like an over-complicated way of standardizing the data). It also doesn't follow best ML practices. For instance, you train one model, then load the test dataset to make a prediction. Then after feature engineering, you predict on the test dataset again to compare models. This should not be done. Also, you refer to one of the models as 'linear regression', but I don;t understand why? You create a DNN in Keras and use ReLU activation functions, so how is it linear regression?

Robert S. · 已于 over 1 year前审核

The jupyter lab did not start

Sonali M. · 已于 over 1 year前审核

Wojciech Ś. · 已于 over 1 year前审核

Thiago S. · 已于 over 1 year前审核

Anthony H. · 已于 over 1 year前审核

Very odd prediction for the first model (without feature engineering), house value is predicted below 10000, very far from the solution's 190k. Moreover it seems like the ocean proximity categorical feature is not included in the feature columns in the first part

Etienne V. · 已于 over 1 year前审核

Piotr T. · 已于 over 1 year前审核

Konrad S. · 已于 over 1 year前审核

Amanda K. · 已于 over 1 year前审核

Nelson F. · 已于 over 1 year前审核

does not work, scikit-learn warning at the beginning

Adrian K. · 已于 over 1 year前审核

Kaita F. · 已于 over 1 year前审核

Karen L. · 已于 over 1 year前审核

Rainer B. · 已于 over 1 year前审核

Tulkin Y. · 已于 over 1 year前审核

Sandesh T. · 已于 over 1 year前审核

Ian C. · 已于 over 1 year前审核

Vaibhav N. · 已于 over 1 year前审核

我们无法确保发布的评价来自已购买或已使用产品的消费者。评价未经 Google 核实。