Google の ML を使用した予想 のレビュー

54864 件のレビュー

Kumar Raj Deepak · 約2年前にレビュー済み

Shrivastava Ayushi · 約2年前にレビュー済み

S SUMESHA · 約2年前にレビュー済み

Mense Akshata · 約2年前にレビュー済み

Kumari Anjali · 約2年前にレビュー済み

Katkade Siddhesh · 約2年前にレビュー済み

Marathe Sangeeta · 約2年前にレビュー済み

Gupta Meena · 約2年前にレビュー済み

nice

Kumar Hitesh · 約2年前にレビュー済み

Dokwal Ayushi · 約2年前にレビュー済み

Great

RAJ ALOK · 約2年前にレビュー済み

jaju ronit · 約2年前にレビュー済み

NICE

Nag Tiyasha · 約2年前にレビュー済み

Jain Abhishek · 約2年前にレビュー済み

Nath Amrit · 約2年前にレビュー済み

nice

Chavan Vaishnavi · 約2年前にレビュー済み

ok

Kumar Mohit · 約2年前にレビュー済み

Shukla Pratiksha · 約2年前にレビュー済み

Venkata Sai Santoshi Arji · 約2年前にレビュー済み

Choudhury Suvendu · 約2年前にレビュー済み

The SQL command in Task 12 is incorrect. The correct one would be: # create training dataset: # create a row for the winning team CREATE OR REPLACE TABLE `bracketology.training_new_features` AS WITH outcomes AS ( SELECT # features season, # 1994 "win" AS label, # our label win_seed AS seed, # ranking # this time without seed even win_school_ncaa AS school_ncaa, lose_seed AS opponent_seed, # ranking lose_school_ncaa AS opponent_school_ncaa FROM `bigquery-public-data.ncaa_basketball.mbb_historical_tournament_games` t WHERE season >= 2014 UNION ALL # create a separate row for the losing team SELECT # features season, # 1994 "loss" AS label, # our label lose_seed AS seed, # ranking lose_school_ncaa AS school_ncaa, win_seed AS opponent_seed, # ranking win_school_ncaa AS opponent_school_ncaa FROM `bigquery-public-data.ncaa_basketball.mbb_historical_tournament_games` t WHERE season >= 2014 UNION ALL # add in 2018 tournament game results not part of the public dataset: SELECT season, label, seed, school_ncaa, opponent_seed, opponent_school_ncaa FROM `data-to-insights.ncaa.2018_tournament_results` ) SELECT o.season, label, # our team seed, school_ncaa, # new pace metrics (basketball possession) team.pace_rank, team.poss_40min, team.pace_rating, # new efficiency metrics (scoring over time) team.efficiency_rank, team.pts_100poss, team.efficiency_rating, # opposing team opponent_seed, opponent_school_ncaa, # new pace metrics (basketball possession) opp.pace_rank AS opp_pace_rank, opp.poss_40min AS opp_poss_40min, opp.pace_rating AS opp_pace_rating, # new efficiency metrics (scoring over time) opp.efficiency_rank AS opp_efficiency_rank, opp.pts_100poss AS opp_pts_100poss, opp.efficiency_rating AS opp_efficiency_rating, # a little feature engineering (take the difference in stats) # new pace metrics (basketball possession) opp.pace_rank - team.pace_rank AS pace_rank_diff, opp.poss_40min - team.poss_40min AS pace_stat_diff, opp.pace_rating - team.pace_rating AS pace_rating_diff, # new efficiency metrics (scoring over time) opp.efficiency_rank - team.efficiency_rank AS eff_rank_diff, opp.pts_100poss - team.pts_100poss AS eff_stat_diff, opp.efficiency_rating - team.efficiency_rating AS eff_rating_diff FROM outcomes AS o LEFT JOIN `data-to-insights.ncaa.feature_engineering` AS team ON o.school_ncaa = team.team AND o.season = team.season LEFT JOIN `data-to-insights.ncaa.feature_engineering` AS opp ON o.opponent_school_ncaa = opp.team AND o.season = opp.season The SQL command in Task 15 is also incorrect. The correct one is: CREATE OR REPLACE MODEL `bracketology.ncaa_model_updated` OPTIONS ( model_type='logistic_reg') AS SELECT # this time, don't train the model on school name or seed season, label, # our pace poss_40min, pace_rank, pace_rating, # opponent pace opp_poss_40min, opp_pace_rank, opp_pace_rating, # difference in pace pace_rank_diff, pace_stat_diff, pace_rating_diff, # our efficiency pts_100poss, efficiency_rank, efficiency_rating, # opponent efficiency opp_pts_100poss, opp_efficiency_rank, opp_efficiency_rating, # difference in efficiency eff_rank_diff, eff_stat_diff, eff_rating_diff FROM `bracketology.training_new_features` # here we'll train on 2014 - 2017 and predict on 2018 WHERE season BETWEEN 2014 AND 2017 # between in SQL is inclusive of end points

Irfanuddin Chowdhury Mohammad · 約2年前にレビュー済み

MISHRA ARUNENDRA · 約2年前にレビュー済み

Bachu Dhyaneswar · 約2年前にレビュー済み

Ali Kaif · 約2年前にレビュー済み

GOOGLEUSER Abhishek · 約2年前にレビュー済み

公開されたレビューが、製品を購入または使用した人によるものであることは保証されません。Google はこれらのレビューの検証を行っていません。