Classifying Images with pre-built TF Container on Vertex AI Reviews

2910 reviews

María M. · Reviewed yaklaşık 1 yıl ago

Ayman B. · Reviewed yaklaşık 1 yıl ago

Jiji A. · Reviewed yaklaşık 1 yıl ago

Cuauhtemoc S. · Reviewed yaklaşık 1 yıl ago

Nishu K. · Reviewed yaklaşık 1 yıl ago

Too much training time

Paulina H. · Reviewed yaklaşık 1 yıl ago

Gayathri D. · Reviewed yaklaşık 1 yıl ago

Chandana H. · Reviewed yaklaşık 1 yıl ago

Omer S. · Reviewed yaklaşık 1 yıl ago

Jeremiah A. · Reviewed yaklaşık 1 yıl ago

Benson B. · Reviewed yaklaşık 1 yıl ago

Protim S. · Reviewed yaklaşık 1 yıl ago

John M. · Reviewed yaklaşık 1 yıl ago

Vidya A. · Reviewed yaklaşık 1 yıl ago

Deploying model to endpoint took too much time.

Minh Son N. · Reviewed yaklaşık 1 yıl ago

I cant seem to complete "CNN" and "autoML vision on vertex AI" lab

Gerald L. · Reviewed yaklaşık 1 yıl ago

Sathya Jothi S. · Reviewed yaklaşık 1 yıl ago

Cibin T. · Reviewed yaklaşık 1 yıl ago

Pravin T. · Reviewed yaklaşık 1 yıl ago

Wipada G. · Reviewed yaklaşık 1 yıl ago

Mallé M. · Reviewed yaklaşık 1 yıl ago

Informative

Leela Krishna V. · Reviewed yaklaşık 1 yıl ago

Marcio S. · Reviewed yaklaşık 1 yıl ago

--------------------------------------------------------------------------- CalledProcessError Traceback (most recent call last) Cell In[45], line 1 ----> 1 get_ipython().run_cell_magic('bash', '', 'echo $JOB_DIR $REGION $JOB_NAME\n\nPYTHON_PACKAGE_URIS=gs://${BUCKET}/mnist/mnist_trainer-0.1.tar.gz\nMACHINE_TYPE=n1-standard-4\nREPLICA_COUNT=1\nPYTHON_PACKAGE_EXECUTOR_IMAGE_URI="us-docker.pkg.dev/vertex-ai/training/tf-cpu.2-3:latest"\nPYTHON_MODULE=trainer.task\n \nWORKER_POOL_SPEC="machine-type=$MACHINE_TYPE,\\\nreplica-count=$REPLICA_COUNT,\\\nexecutor-image-uri=$PYTHON_PACKAGE_EXECUTOR_IMAGE_URI,\\\npython-module=$PYTHON_MODULE"\n\ngcloud ai custom-jobs create \\\n --region=${REGION} \\\n --display-name=$JOB_NAME \\\n --python-package-uris=$PYTHON_PACKAGE_URIS \\\n --worker-pool-spec=$WORKER_POOL_SPEC \\\n --args="--job-dir=$JOB_DIR,--model_type=$MODEL_TYPE"\n') File /opt/conda/lib/python3.9/site-packages/IPython/core/interactiveshell.py:2517, in InteractiveShell.run_cell_magic(self, magic_name, line, cell) 2515 with self.builtin_trap: 2516 args = (magic_arg_s, cell) -> 2517 result = fn(*args, **kwargs) 2519 # The code below prevents the output from being displayed 2520 # when using magics with decorator @output_can_be_silenced 2521 # when the last Python token in the expression is a ';'. 2522 if getattr(fn, magic.MAGIC_OUTPUT_CAN_BE_SILENCED, False): File /opt/conda/lib/python3.9/site-packages/IPython/core/magics/script.py:154, in ScriptMagics._make_script_magic.<locals>.named_script_magic(line, cell) 152 else: 153 line = script --> 154 return self.shebang(line, cell) File /opt/conda/lib/python3.9/site-packages/IPython/core/magics/script.py:314, in ScriptMagics.shebang(self, line, cell) 309 if args.raise_error and p.returncode != 0: 310 # If we get here and p.returncode is still None, we must have 311 # killed it but not yet seen its return code. We don't wait for it, 312 # in case it's stuck in uninterruptible sleep. -9 = SIGKILL 313 rc = p.returncode or -9 --> 314 raise CalledProcessError(rc, cell) CalledProcessError: Command 'b'echo $JOB_DIR $REGION $JOB_NAME\n\nPYTHON_PACKAGE_URIS=gs://${BUCKET}/mnist/mnist_trainer-0.1.tar.gz\nMACHINE_TYPE=n1-standard-4\nREPLICA_COUNT=1\nPYTHON_PACKAGE_EXECUTOR_IMAGE_URI="us-docker.pkg.dev/vertex-ai/training/tf-cpu.2-3:latest"\nPYTHON_MODULE=trainer.task\n \nWORKER_POOL_SPEC="machine-type=$MACHINE_TYPE,\\\nreplica-count=$REPLICA_COUNT,\\\nexecutor-image-uri=$PYTHON_PACKAGE_EXECUTOR_IMAGE_URI,\\\npython-module=$PYTHON_MODULE"\n\ngcloud ai custom-jobs create \\\n --region=${REGION} \\\n --display-name=$JOB_NAME \\\n --python-package-uris=$PYTHON_PACKAGE_URIS \\\n --worker-pool-spec=$WORKER_POOL_SPEC \\\n --args="--job-dir=$JOB_DIR,--model_type=$MODEL_TYPE"\n'' returned non-zero exit status 1.

Mallé M. · Reviewed yaklaşık 1 yıl ago

Vaishnavi K. · Reviewed yaklaşık 1 yıl ago

We do not ensure the published reviews originate from consumers who have purchased or used the products. Reviews are not verified by Google.