Classifying Images with pre-built TF Container on Vertex AI avaliações

2907 avaliações

Cuauhtemoc S. · Revisado há about 1 year

Nishu K. · Revisado há about 1 year

Too much training time

Paulina H. · Revisado há about 1 year

Gayathri D. · Revisado há about 1 year

Chandana H. · Revisado há about 1 year

Omer S. · Revisado há about 1 year

Jeremiah A. · Revisado há about 1 year

Benson B. · Revisado há about 1 year

Protim S. · Revisado há about 1 year

John M. · Revisado há about 1 year

Vidya A. · Revisado há about 1 year

Deploying model to endpoint took too much time.

Minh Son N. · Revisado há about 1 year

I cant seem to complete "CNN" and "autoML vision on vertex AI" lab

Gerald L. · Revisado há about 1 year

Sathya Jothi S. · Revisado há about 1 year

Cibin T. · Revisado há about 1 year

Pravin T. · Revisado há about 1 year

Wipada G. · Revisado há about 1 year

Mallé M. · Revisado há about 1 year

Informative

Leela Krishna V. · Revisado há about 1 year

Marcio S. · Revisado há about 1 year

--------------------------------------------------------------------------- CalledProcessError Traceback (most recent call last) Cell In[45], line 1 ----> 1 get_ipython().run_cell_magic('bash', '', 'echo $JOB_DIR $REGION $JOB_NAME\n\nPYTHON_PACKAGE_URIS=gs://${BUCKET}/mnist/mnist_trainer-0.1.tar.gz\nMACHINE_TYPE=n1-standard-4\nREPLICA_COUNT=1\nPYTHON_PACKAGE_EXECUTOR_IMAGE_URI="us-docker.pkg.dev/vertex-ai/training/tf-cpu.2-3:latest"\nPYTHON_MODULE=trainer.task\n \nWORKER_POOL_SPEC="machine-type=$MACHINE_TYPE,\\\nreplica-count=$REPLICA_COUNT,\\\nexecutor-image-uri=$PYTHON_PACKAGE_EXECUTOR_IMAGE_URI,\\\npython-module=$PYTHON_MODULE"\n\ngcloud ai custom-jobs create \\\n --region=${REGION} \\\n --display-name=$JOB_NAME \\\n --python-package-uris=$PYTHON_PACKAGE_URIS \\\n --worker-pool-spec=$WORKER_POOL_SPEC \\\n --args="--job-dir=$JOB_DIR,--model_type=$MODEL_TYPE"\n') File /opt/conda/lib/python3.9/site-packages/IPython/core/interactiveshell.py:2517, in InteractiveShell.run_cell_magic(self, magic_name, line, cell) 2515 with self.builtin_trap: 2516 args = (magic_arg_s, cell) -> 2517 result = fn(*args, **kwargs) 2519 # The code below prevents the output from being displayed 2520 # when using magics with decorator @output_can_be_silenced 2521 # when the last Python token in the expression is a ';'. 2522 if getattr(fn, magic.MAGIC_OUTPUT_CAN_BE_SILENCED, False): File /opt/conda/lib/python3.9/site-packages/IPython/core/magics/script.py:154, in ScriptMagics._make_script_magic.<locals>.named_script_magic(line, cell) 152 else: 153 line = script --> 154 return self.shebang(line, cell) File /opt/conda/lib/python3.9/site-packages/IPython/core/magics/script.py:314, in ScriptMagics.shebang(self, line, cell) 309 if args.raise_error and p.returncode != 0: 310 # If we get here and p.returncode is still None, we must have 311 # killed it but not yet seen its return code. We don't wait for it, 312 # in case it's stuck in uninterruptible sleep. -9 = SIGKILL 313 rc = p.returncode or -9 --> 314 raise CalledProcessError(rc, cell) CalledProcessError: Command 'b'echo $JOB_DIR $REGION $JOB_NAME\n\nPYTHON_PACKAGE_URIS=gs://${BUCKET}/mnist/mnist_trainer-0.1.tar.gz\nMACHINE_TYPE=n1-standard-4\nREPLICA_COUNT=1\nPYTHON_PACKAGE_EXECUTOR_IMAGE_URI="us-docker.pkg.dev/vertex-ai/training/tf-cpu.2-3:latest"\nPYTHON_MODULE=trainer.task\n \nWORKER_POOL_SPEC="machine-type=$MACHINE_TYPE,\\\nreplica-count=$REPLICA_COUNT,\\\nexecutor-image-uri=$PYTHON_PACKAGE_EXECUTOR_IMAGE_URI,\\\npython-module=$PYTHON_MODULE"\n\ngcloud ai custom-jobs create \\\n --region=${REGION} \\\n --display-name=$JOB_NAME \\\n --python-package-uris=$PYTHON_PACKAGE_URIS \\\n --worker-pool-spec=$WORKER_POOL_SPEC \\\n --args="--job-dir=$JOB_DIR,--model_type=$MODEL_TYPE"\n'' returned non-zero exit status 1.

Mallé M. · Revisado há about 1 year

Vaishnavi K. · Revisado há about 1 year

Anand R. · Revisado há about 1 year

ardian n. · Revisado há about 1 year

Ahh! I did cheat for sure, whats wrong with region us-east4 cause I think I denied my job from running

Kamurasi J. · Revisado há about 1 year

Não garantimos que as avaliações publicadas sejam de consumidores que compraram ou usaram os produtos. As avaliações não são verificadas pelo Google.