In this lab, you learn how to create and run ML pipelines with Vertex Pipelines.
Learning objectives
Use the Kubeflow Pipelines SDK to build scalable ML pipelines.
Create and run a 3-step intro pipeline that takes text input.
Create and run a pipeline that trains, evaluates, and deploys an AutoML classification model.
Use pre-built components, provided through the google_cloud_pipeline_components library, to interact with Vertex AI services.
Schedule a pipeline job with Cloud Scheduler.
Setup and requirements
For each lab, you get a new Google Cloud project and set of resources for a fixed time at no cost.
Sign in to Qwiklabs using an incognito window.
Note the lab's access time (for example, 1:15:00), and make sure you can finish within that time.
There is no pause feature. You can restart if needed, but you have to start at the beginning.
When ready, click Start lab.
Note your lab credentials (Username and Password). You will use them to sign in to the Google Cloud Console.
Click Open Google Console.
Click Use another account and copy/paste credentials for this lab into the prompts.
If you use other credentials, you'll receive errors or incur charges.
Accept the terms and skip the recovery resource page.
Activate Cloud Shell
Cloud Shell is a virtual machine that contains development tools. It offers a persistent 5-GB home directory and runs on Google Cloud. Cloud Shell provides command-line access to your Google Cloud resources. gcloud is the command-line tool for Google Cloud. It comes pre-installed on Cloud Shell and supports tab completion.
Click the Activate Cloud Shell button () at the top right of the console.
Click Continue.
It takes a few moments to provision and connect to the environment. When you are connected, you are also authenticated, and the project is set to your PROJECT_ID.
[core]
project = qwiklabs-gcp-44776a13dea667a6
Note: Full documentation of gcloud is available in the gcloud CLI overview guide.
Task 1. Cloud environment setup
Cloud Shell has a few environment variables, including GOOGLE_CLOUD_PROJECT which contains the name of our current Cloud project. We use this in various places throughout this lab. You can see it by running:
echo $GOOGLE_CLOUD_PROJECT
Enable APIs
In later steps you see where these services are needed (and why), but to begin, run this command to give your project access to the Compute Engine, Container Registry, and Vertex AI services:
To run a training job on Vertex AI, you need a storage bucket in which to store your saved model assets. The bucket must be regional. These instructions specify US-central, but you can use another region (just replace it throughout this lab).
To create a bucket, in the Cloud Shell terminal, run the following command:
This ensures that Vertex Pipelines has the necessary permissions to write files to this bucket.
Task 3. Enable the Recommended APIs
In the Google Cloud console, in the Navigation menu (), click Vertex AI > Dashboard.
Click Enable All Recommended API.
Task 4. Launch a Vertex AI Notebooks instance
In the Google Cloud Console, on the Navigation Menu, click Vertex AI > Workbench.
On the User-Managed Notebooks page, click CREATE NEW, select TensorFlow Enterprise 2.11 (Intel® MKL-DNN/MKL).
In the New notebook instance dialog, confirm the name of the deep learning VM, if you don’t want to change the region and zone, leave all settings as they are and then click Create.
The new VM will take 2-3 minutes to start.
Click Open JupyterLab.
A JupyterLab window will open in a new tab.
If you see “Build recommended” pop up, click Build. If you see the build failed, ignore it.
Task 5. Clone a course repo within your Vertex AI Notebooks instance
To clone the training-data-analyst notebook in your JupyterLab instance:
In JupyterLab, to open a new terminal, click the Terminal icon.
At the command-line prompt, run the following command:
To confirm that you have cloned the repository, double-click on the training-data-analyst directory and ensure that you can see its contents.
The files for all the Jupyter notebook-based labs throughout this course are available in this directory.
Task 6. Create and Run ML Pipelines with Vertex Pipelines
In the notebook interface, navigate to training-data-analyst > courses > machine_learning > deepdive2 > machine_learning_in_the_enterprise > labs, and open pipelines_intro_kfp.ipynb.
In the notebook interface, click Edit > Clear All Outputs.
Carefully read through the notebook instructions and fill in lines marked with #TODO where you need to complete the code.
Tip: To run the current cell, click the cell and press SHIFT+ENTER. Other cell commands are listed in the notebook UI under Run.
Hints may also be provided for the tasks to guide you along. Highlight the text to read the hints (they are in white text).
If you need more help, look at the complete solution at training-data-analyst > courses > machine_learning > deepdive2 > machine_learning_in_the_enterprise > solutions, and open pipelines_intro_kfp.ipynb.
End your lab
When you have completed your lab, click End Lab. Qwiklabs removes the resources you’ve used and cleans the account for you.
You will be given an opportunity to rate the lab experience. Select the applicable number of stars, type a comment, and then click Submit.
The number of stars indicates the following:
1 star = Very dissatisfied
2 stars = Dissatisfied
3 stars = Neutral
4 stars = Satisfied
5 stars = Very satisfied
You can close the dialog box if you don't want to provide feedback.
For feedback, suggestions, or corrections, please use the Support tab.
Copyright 2022 Google LLC All rights reserved. Google and the Google logo are trademarks of Google LLC. All other company and product names may be trademarks of the respective companies with which they are associated.
Lab membuat project dan resource Google Cloud untuk jangka waktu tertentu
Lab memiliki batas waktu dan tidak memiliki fitur jeda. Jika lab diakhiri, Anda harus memulainya lagi dari awal.
Di kiri atas layar, klik Start lab untuk memulai
Gunakan penjelajahan rahasia
Salin Nama Pengguna dan Sandi yang diberikan untuk lab tersebut
Klik Open console dalam mode pribadi
Login ke Konsol
Login menggunakan kredensial lab Anda. Menggunakan kredensial lain mungkin menyebabkan error atau dikenai biaya.
Setujui persyaratan, dan lewati halaman resource pemulihan
Jangan klik End lab kecuali jika Anda sudah menyelesaikan lab atau ingin mengulanginya, karena tindakan ini akan menghapus pekerjaan Anda dan menghapus project
Konten ini tidak tersedia untuk saat ini
Kami akan memberi tahu Anda melalui email saat konten tersedia
Bagus!
Kami akan menghubungi Anda melalui email saat konten tersedia
Satu lab dalam satu waktu
Konfirmasi untuk mengakhiri semua lab yang ada dan memulai lab ini
Gunakan penjelajahan rahasia untuk menjalankan lab
Gunakan jendela Samaran atau browser pribadi untuk menjalankan lab ini. Langkah ini akan mencegah konflik antara akun pribadi Anda dan akun Siswa yang dapat menyebabkan tagihan ekstra pada akun pribadi Anda.
In this lab, you will learn how to create and run ML pipelines with Vertex Pipelines.