Analisi dei dati serverless con Dataflow: input aggiuntivi (Python) recensioni
41311 recensioni
Walter W. · Recensione inserita oltre 2 anni fa
Thamyaa A. · Recensione inserita oltre 2 anni fa
Islam T. · Recensione inserita oltre 2 anni fa
Xiao C. · Recensione inserita oltre 2 anni fa
Shiva C. · Recensione inserita oltre 2 anni fa
We keep getting this error, JavaProjectsThatNeedHelp.py:163: BeamDeprecationWarning: BigQuerySource is deprecated since 2.25.0. Use ReadFromBigQuery instead. bigqcollection = p | 'ReadFromBQ' >> beam.io.Read(beam.io.BigQuerySource(project=project,query=get_java_query)) /usr/local/lib/python3.9/dist-packages/apache_beam/io/gcp/bigquery.py:2485: BeamDeprecationWarning: options is deprecated since First stable release. References to <pipeline>.options will not be supported temp_location = pcoll.pipeline.options.view_as(
Waleed G. · Recensione inserita oltre 2 anni fa
Jai C. · Recensione inserita oltre 2 anni fa
Islam T. · Recensione inserita oltre 2 anni fa
Tamas S. · Recensione inserita oltre 2 anni fa
Andik A. · Recensione inserita oltre 2 anni fa
Tamas S. · Recensione inserita oltre 2 anni fa
Ashutosh D. · Recensione inserita oltre 2 anni fa
Jagadeesh N. · Recensione inserita oltre 2 anni fa
Matthieu C. · Recensione inserita oltre 2 anni fa
Zana O. · Recensione inserita oltre 2 anni fa
Allam V. · Recensione inserita oltre 2 anni fa
Sudarsan S. · Recensione inserita oltre 2 anni fa
Amine K. · Recensione inserita oltre 2 anni fa
Ben S. · Recensione inserita oltre 2 anni fa
OMKAR B. · Recensione inserita oltre 2 anni fa
ok
Sovers S. · Recensione inserita oltre 2 anni fa
gnanaarasan j. · Recensione inserita oltre 2 anni fa
Executing the pipeline on the cloud (Task 4, step 4) often results in the pipeline failing due to a ZONE_RESOURCE_POOL_EXHAUSTED error, and the instructions don't account for this error. The error can (probably) be suppressed right away by changing the region/zone of the job (by editing JavaProjectsThatNeedHelp.py, the relevant parameter is `'--region=us-central1',` at around line 155, and if you want to specify the zone you can add another parameter beside it called `'--worker_zone=<zone>'` — the zone MUST BE contained within the specified region), but it seems like changing to any region beside `us-central1` prevents the lab from counting the objective as completed. Alternatively, you can just wait and try again another time. I really think this lab should check whether the pipeline has been successfully run regardless of region, because an unlucky learner could end up hitting the resource pool exhausted error several times in a row and potentially be locked out of the lab while trying to debug it. I ran the lab 3 times before succeeding in `us-central1`. It also seems like people in other regions are persistently having another type of error, `'us-central1' violates constraint 'constraints/gcp.resourceLocations'`. If the lab accounted for work being done in different regions (and included some guidance about these potential errors), both of these issues would be easy to resolve. There are loads of people reporting the same issues in the reviews for this lab, the Java version of the lab, the Coursera forums for a Coursera course using this lab, and there is a GitHub issue about this on the training-data-analyst repo.
Nicholas C. · Recensione inserita oltre 2 anni fa
自分の進め方が悪かったのか、最後の[進行状況を確認]押しても完了できなかった GCSのバケットにはファイルが作成されており、ローカル・クラウドそれぞれで更新がかかっていた "error": { "code": 400, "message": "(5b4cea77a6d05a9d): 'us-central1' violates constraint 'constraints/gcp.resourceLocations' on the resource 'projects/qwiklabs-gcp-02-54459e55a7fd'.", "status": "FAILED_PRECONDITION"
Yuhei K. · Recensione inserita oltre 2 anni fa
ayushi p. · Recensione inserita oltre 2 anni fa
Non garantiamo che le recensioni pubblicate provengano da consumatori che hanno acquistato o utilizzato i prodotti. Le recensioni non sono verificate da Google.