Structured data prediction using Vertex AI Platform Reviews
Loading...
No results found.

Google Cloud Skills Boost

Apply your skills in Google Cloud console

Structured data prediction using Vertex AI Platform Reviews

8092 reviews

Gerald S. · Reviewed 5 ay ago

Andre G. · Reviewed 5 ay ago

GOPIKA C. · Reviewed 5 ay ago

Luis Miguel B. · Reviewed 5 ay ago

Mattia C. · Reviewed 5 ay ago

Diego A. · Reviewed 5 ay ago

Diego G. · Reviewed 5 ay ago

Sobhan N. · Reviewed 5 ay ago

Balaji r. · Reviewed 5 ay ago

took 16 minutes to train that keras model. too long. it's also a weird wide + deep neural net from 2017. probably deprecated in 2025

Alexei C. · Reviewed 5 ay ago

Sujay H. · Reviewed 5 ay ago

Facundo A. · Reviewed 5 ay ago

Camilo G. · Reviewed 5 ay ago

Thomas N. · Reviewed 5 ay ago

Asitho D. · Reviewed 5 ay ago

thanks

hicham h. · Reviewed 5 ay ago

Zahra M. · Reviewed 5 ay ago

Ashwin P. · Reviewed 5 ay ago

Yuchieh Cheng 鄭宇傑 E. · Reviewed 5 ay ago

Deepak B. · Reviewed 5 ay ago

Tristan L. · Reviewed 5 ay ago

ERROR: (gcloud.ai-platform.jobs.submit.training) FAILED_PRECONDITION: Constraint `constraints/gcp.resourceLocations` violated for `projects/qwiklabs-gcp-00-0ac1d33a0acf`: region `us-central1` not allowed. See https://cloud.google.com/resource-manager/docs/organization-policy/defining-locations for details. - '@type': type.googleapis.com/google.rpc.PreconditionFailure violations: - description: 'Constraint `constraints/gcp.resourceLocations` violated for `projects/qwiklabs-gcp-00-0ac1d33a0acf`: region `us-central1` not allowed. See https://cloud.google.com/resource-manager/docs/organization-policy/defining-locations for details.' subject: orgpolicy:projects/qwiklabs-gcp-00-0ac1d33a0acf type: constraints/gcp.resourceLocations --------------------------------------------------------------------------- CalledProcessError Traceback (most recent call last) Cell In[21], line 1 ----> 1 get_ipython().run_cell_magic('bash', '', '\nOUTDIR=gs://${BUCKET}/babyweight/trained_model\nJOBID=babyweight_$(date -u +%y%m%d_%H%M%S)\n\ngcloud ai-platform jobs submit training ${JOBID} \\\n --region=${REGION} \\\n --module-name=trainer.task \\\n --package-path=$(pwd)/babyweight/trainer \\\n --job-dir=${OUTDIR} \\\n --staging-bucket=gs://${BUCKET} \\\n --master-machine-type=n1-standard-8 \\\n --scale-tier=CUSTOM \\\n --runtime-version=${TFVERSION} \\\n --python-version=${PYTHONVERSION} \\\n -- \\\n --train_data_path=gs://${BUCKET}/babyweight/data/train*.csv \\\n --eval_data_path=gs://${BUCKET}/babyweight/data/eval*.csv \\\n --output_dir=${OUTDIR} \\\n --num_epochs=10 \\\n --train_examples=10000 \\\n --eval_steps=100 \\\n --batch_size=32 \\\n --nembeds=8\n') File /opt/conda/lib/python3.10/site-packages/IPython/core/interactiveshell.py:2517, in InteractiveShell.run_cell_magic(self, magic_name, line, cell) 2515 with self.builtin_trap: 2516 args = (magic_arg_s, cell) -> 2517 result = fn(*args, **kwargs) 2519 # The code below prevents the output from being displayed 2520 # when using magics with decorator @output_can_be_silenced 2521 # when the last Python token in the expression is a ';'. 2522 if getattr(fn, magic.MAGIC_OUTPUT_CAN_BE_SILENCED, False): File /opt/conda/lib/python3.10/site-packages/IPython/core/magics/script.py:154, in ScriptMagics._make_script_magic.<locals>.named_script_magic(line, cell) 152 else: 153 line = script --> 154 return self.shebang(line, cell) File /opt/conda/lib/python3.10/site-packages/IPython/core/magics/script.py:314, in ScriptMagics.shebang(self, line, cell) 309 if args.raise_error and p.returncode != 0: 310 # If we get here and p.returncode is still None, we must have 311 # killed it but not yet seen its return code. We don't wait for it, 312 # in case it's stuck in uninterruptible sleep. -9 = SIGKILL 313 rc = p.returncode or -9 --> 314 raise CalledProcessError(rc, cell) CalledProcessError: Command 'b'\nOUTDIR=gs://${BUCKET}/babyweight/trained_model\nJOBID=babyweight_$(date -u +%y%m%d_%H%M%S)\n\ngcloud ai-platform jobs submit training ${JOBID} \\\n --region=${REGION} \\\n --module-name=trainer.task \\\n --package-path=$(pwd)/babyweight/trainer \\\n --job-dir=${OUTDIR} \\\n --staging-bucket=gs://${BUCKET} \\\n --master-machine-type=n1-standard-8 \\\n --scale-tier=CUSTOM \\\n --runtime-version=${TFVERSION} \\\n --python-version=${PYTHONVERSION} \\\n -- \\\n --train_data_path=gs://${BUCKET}/babyweight/data/train*.csv \\\n --eval_data_path=gs://${BUCKET}/babyweight/data/eval*.csv \\\n --output_dir=${OUTDIR} \\\n --num_epochs=10 \\\n --train_examples=10000 \\\n --eval_steps=100 \\\n --batch_size=32 \\\n --nembeds=8\n'' returned non-zero exit status 1.

Carlos Fernando S. · Reviewed 5 ay ago

All graded tasks are completing. However, the issue is in the notebook, showing errors during the deployment..

Arnel Perez P. · Reviewed 5 ay ago

The deploy code had a problem with the region

Abimael A. · Reviewed 5 ay ago

Angeline J. · Reviewed 5 ay ago

We do not ensure the published reviews originate from consumers who have purchased or used the products. Reviews are not verified by Google.