리뷰 Structured data prediction using Vertex AI Platform개
로드 중...
검색 결과가 없습니다.

Google Cloud Skills Boost

Google Cloud 콘솔에서 기술 적용

리뷰 Structured data prediction using Vertex AI Platform개

리뷰 8092개

Gerald S. · 5개월 전에 리뷰됨

Andre G. · 5개월 전에 리뷰됨

GOPIKA C. · 5개월 전에 리뷰됨

Luis Miguel B. · 5개월 전에 리뷰됨

Mattia C. · 5개월 전에 리뷰됨

Diego A. · 5개월 전에 리뷰됨

Diego G. · 5개월 전에 리뷰됨

Sobhan N. · 5개월 전에 리뷰됨

Balaji r. · 5개월 전에 리뷰됨

took 16 minutes to train that keras model. too long. it's also a weird wide + deep neural net from 2017. probably deprecated in 2025

Alexei C. · 5개월 전에 리뷰됨

Sujay H. · 5개월 전에 리뷰됨

Facundo A. · 5개월 전에 리뷰됨

Camilo G. · 5개월 전에 리뷰됨

Thomas N. · 5개월 전에 리뷰됨

Asitho D. · 5개월 전에 리뷰됨

thanks

hicham h. · 5개월 전에 리뷰됨

Zahra M. · 5개월 전에 리뷰됨

Ashwin P. · 5개월 전에 리뷰됨

Yuchieh Cheng 鄭宇傑 E. · 5개월 전에 리뷰됨

Deepak B. · 5개월 전에 리뷰됨

Tristan L. · 5개월 전에 리뷰됨

ERROR: (gcloud.ai-platform.jobs.submit.training) FAILED_PRECONDITION: Constraint `constraints/gcp.resourceLocations` violated for `projects/qwiklabs-gcp-00-0ac1d33a0acf`: region `us-central1` not allowed. See https://cloud.google.com/resource-manager/docs/organization-policy/defining-locations for details. - '@type': type.googleapis.com/google.rpc.PreconditionFailure violations: - description: 'Constraint `constraints/gcp.resourceLocations` violated for `projects/qwiklabs-gcp-00-0ac1d33a0acf`: region `us-central1` not allowed. See https://cloud.google.com/resource-manager/docs/organization-policy/defining-locations for details.' subject: orgpolicy:projects/qwiklabs-gcp-00-0ac1d33a0acf type: constraints/gcp.resourceLocations --------------------------------------------------------------------------- CalledProcessError Traceback (most recent call last) Cell In[21], line 1 ----> 1 get_ipython().run_cell_magic('bash', '', '\nOUTDIR=gs://${BUCKET}/babyweight/trained_model\nJOBID=babyweight_$(date -u +%y%m%d_%H%M%S)\n\ngcloud ai-platform jobs submit training ${JOBID} \\\n --region=${REGION} \\\n --module-name=trainer.task \\\n --package-path=$(pwd)/babyweight/trainer \\\n --job-dir=${OUTDIR} \\\n --staging-bucket=gs://${BUCKET} \\\n --master-machine-type=n1-standard-8 \\\n --scale-tier=CUSTOM \\\n --runtime-version=${TFVERSION} \\\n --python-version=${PYTHONVERSION} \\\n -- \\\n --train_data_path=gs://${BUCKET}/babyweight/data/train*.csv \\\n --eval_data_path=gs://${BUCKET}/babyweight/data/eval*.csv \\\n --output_dir=${OUTDIR} \\\n --num_epochs=10 \\\n --train_examples=10000 \\\n --eval_steps=100 \\\n --batch_size=32 \\\n --nembeds=8\n') File /opt/conda/lib/python3.10/site-packages/IPython/core/interactiveshell.py:2517, in InteractiveShell.run_cell_magic(self, magic_name, line, cell) 2515 with self.builtin_trap: 2516 args = (magic_arg_s, cell) -> 2517 result = fn(*args, **kwargs) 2519 # The code below prevents the output from being displayed 2520 # when using magics with decorator @output_can_be_silenced 2521 # when the last Python token in the expression is a ';'. 2522 if getattr(fn, magic.MAGIC_OUTPUT_CAN_BE_SILENCED, False): File /opt/conda/lib/python3.10/site-packages/IPython/core/magics/script.py:154, in ScriptMagics._make_script_magic.<locals>.named_script_magic(line, cell) 152 else: 153 line = script --> 154 return self.shebang(line, cell) File /opt/conda/lib/python3.10/site-packages/IPython/core/magics/script.py:314, in ScriptMagics.shebang(self, line, cell) 309 if args.raise_error and p.returncode != 0: 310 # If we get here and p.returncode is still None, we must have 311 # killed it but not yet seen its return code. We don't wait for it, 312 # in case it's stuck in uninterruptible sleep. -9 = SIGKILL 313 rc = p.returncode or -9 --> 314 raise CalledProcessError(rc, cell) CalledProcessError: Command 'b'\nOUTDIR=gs://${BUCKET}/babyweight/trained_model\nJOBID=babyweight_$(date -u +%y%m%d_%H%M%S)\n\ngcloud ai-platform jobs submit training ${JOBID} \\\n --region=${REGION} \\\n --module-name=trainer.task \\\n --package-path=$(pwd)/babyweight/trainer \\\n --job-dir=${OUTDIR} \\\n --staging-bucket=gs://${BUCKET} \\\n --master-machine-type=n1-standard-8 \\\n --scale-tier=CUSTOM \\\n --runtime-version=${TFVERSION} \\\n --python-version=${PYTHONVERSION} \\\n -- \\\n --train_data_path=gs://${BUCKET}/babyweight/data/train*.csv \\\n --eval_data_path=gs://${BUCKET}/babyweight/data/eval*.csv \\\n --output_dir=${OUTDIR} \\\n --num_epochs=10 \\\n --train_examples=10000 \\\n --eval_steps=100 \\\n --batch_size=32 \\\n --nembeds=8\n'' returned non-zero exit status 1.

Carlos Fernando S. · 5개월 전에 리뷰됨

All graded tasks are completing. However, the issue is in the notebook, showing errors during the deployment..

Arnel Perez P. · 5개월 전에 리뷰됨

The deploy code had a problem with the region

Abimael A. · 5개월 전에 리뷰됨

Angeline J. · 5개월 전에 리뷰됨

Google은 게시된 리뷰가 제품을 구매 또는 사용한 소비자에 의해 작성되었음을 보증하지 않습니다. 리뷰는 Google의 인증을 거치지 않습니다.