Structured data prediction using Vertex AI Platform Ulasan
Memuat…
Tidak ditemukan hasil.

Google Cloud Skills Boost

Terapkan keterampilan Anda di Konsol Google Cloud

Structured data prediction using Vertex AI Platform Ulasan

8092 ulasan

Gerald S. · Diulas 5 bulan lalu

Andre G. · Diulas 5 bulan lalu

GOPIKA C. · Diulas 5 bulan lalu

Luis Miguel B. · Diulas 5 bulan lalu

Mattia C. · Diulas 5 bulan lalu

Diego A. · Diulas 5 bulan lalu

Diego G. · Diulas 5 bulan lalu

Sobhan N. · Diulas 5 bulan lalu

Balaji r. · Diulas 5 bulan lalu

took 16 minutes to train that keras model. too long. it's also a weird wide + deep neural net from 2017. probably deprecated in 2025

Alexei C. · Diulas 5 bulan lalu

Sujay H. · Diulas 5 bulan lalu

Facundo A. · Diulas 5 bulan lalu

Camilo G. · Diulas 5 bulan lalu

Thomas N. · Diulas 5 bulan lalu

Asitho D. · Diulas 5 bulan lalu

thanks

hicham h. · Diulas 5 bulan lalu

Zahra M. · Diulas 5 bulan lalu

Ashwin P. · Diulas 5 bulan lalu

Yuchieh Cheng 鄭宇傑 E. · Diulas 5 bulan lalu

Deepak B. · Diulas 5 bulan lalu

Tristan L. · Diulas 5 bulan lalu

ERROR: (gcloud.ai-platform.jobs.submit.training) FAILED_PRECONDITION: Constraint `constraints/gcp.resourceLocations` violated for `projects/qwiklabs-gcp-00-0ac1d33a0acf`: region `us-central1` not allowed. See https://cloud.google.com/resource-manager/docs/organization-policy/defining-locations for details. - '@type': type.googleapis.com/google.rpc.PreconditionFailure violations: - description: 'Constraint `constraints/gcp.resourceLocations` violated for `projects/qwiklabs-gcp-00-0ac1d33a0acf`: region `us-central1` not allowed. See https://cloud.google.com/resource-manager/docs/organization-policy/defining-locations for details.' subject: orgpolicy:projects/qwiklabs-gcp-00-0ac1d33a0acf type: constraints/gcp.resourceLocations --------------------------------------------------------------------------- CalledProcessError Traceback (most recent call last) Cell In[21], line 1 ----> 1 get_ipython().run_cell_magic('bash', '', '\nOUTDIR=gs://${BUCKET}/babyweight/trained_model\nJOBID=babyweight_$(date -u +%y%m%d_%H%M%S)\n\ngcloud ai-platform jobs submit training ${JOBID} \\\n --region=${REGION} \\\n --module-name=trainer.task \\\n --package-path=$(pwd)/babyweight/trainer \\\n --job-dir=${OUTDIR} \\\n --staging-bucket=gs://${BUCKET} \\\n --master-machine-type=n1-standard-8 \\\n --scale-tier=CUSTOM \\\n --runtime-version=${TFVERSION} \\\n --python-version=${PYTHONVERSION} \\\n -- \\\n --train_data_path=gs://${BUCKET}/babyweight/data/train*.csv \\\n --eval_data_path=gs://${BUCKET}/babyweight/data/eval*.csv \\\n --output_dir=${OUTDIR} \\\n --num_epochs=10 \\\n --train_examples=10000 \\\n --eval_steps=100 \\\n --batch_size=32 \\\n --nembeds=8\n') File /opt/conda/lib/python3.10/site-packages/IPython/core/interactiveshell.py:2517, in InteractiveShell.run_cell_magic(self, magic_name, line, cell) 2515 with self.builtin_trap: 2516 args = (magic_arg_s, cell) -> 2517 result = fn(*args, **kwargs) 2519 # The code below prevents the output from being displayed 2520 # when using magics with decorator @output_can_be_silenced 2521 # when the last Python token in the expression is a ';'. 2522 if getattr(fn, magic.MAGIC_OUTPUT_CAN_BE_SILENCED, False): File /opt/conda/lib/python3.10/site-packages/IPython/core/magics/script.py:154, in ScriptMagics._make_script_magic.<locals>.named_script_magic(line, cell) 152 else: 153 line = script --> 154 return self.shebang(line, cell) File /opt/conda/lib/python3.10/site-packages/IPython/core/magics/script.py:314, in ScriptMagics.shebang(self, line, cell) 309 if args.raise_error and p.returncode != 0: 310 # If we get here and p.returncode is still None, we must have 311 # killed it but not yet seen its return code. We don't wait for it, 312 # in case it's stuck in uninterruptible sleep. -9 = SIGKILL 313 rc = p.returncode or -9 --> 314 raise CalledProcessError(rc, cell) CalledProcessError: Command 'b'\nOUTDIR=gs://${BUCKET}/babyweight/trained_model\nJOBID=babyweight_$(date -u +%y%m%d_%H%M%S)\n\ngcloud ai-platform jobs submit training ${JOBID} \\\n --region=${REGION} \\\n --module-name=trainer.task \\\n --package-path=$(pwd)/babyweight/trainer \\\n --job-dir=${OUTDIR} \\\n --staging-bucket=gs://${BUCKET} \\\n --master-machine-type=n1-standard-8 \\\n --scale-tier=CUSTOM \\\n --runtime-version=${TFVERSION} \\\n --python-version=${PYTHONVERSION} \\\n -- \\\n --train_data_path=gs://${BUCKET}/babyweight/data/train*.csv \\\n --eval_data_path=gs://${BUCKET}/babyweight/data/eval*.csv \\\n --output_dir=${OUTDIR} \\\n --num_epochs=10 \\\n --train_examples=10000 \\\n --eval_steps=100 \\\n --batch_size=32 \\\n --nembeds=8\n'' returned non-zero exit status 1.

Carlos Fernando S. · Diulas 5 bulan lalu

All graded tasks are completing. However, the issue is in the notebook, showing errors during the deployment..

Arnel Perez P. · Diulas 5 bulan lalu

The deploy code had a problem with the region

Abimael A. · Diulas 5 bulan lalu

Angeline J. · Diulas 5 bulan lalu

Kami tidak dapat memastikan bahwa ulasan yang dipublikasikan berasal dari konsumen yang telah membeli atau menggunakan produk terkait. Ulasan tidak diverifikasi oleh Google.