Opiniones sobre Predicción de datos estructurados con Vertex AI Platform
Cargando…
No se encontraron resultados.

Google Cloud Skills Boost

Aplica tus habilidades en la consola de Google Cloud

Opiniones sobre Predicción de datos estructurados con Vertex AI Platform

8089 opiniones

Luis Miguel B. · Se revisó hace 5 meses

Mattia C. · Se revisó hace 5 meses

Diego A. · Se revisó hace 5 meses

Diego G. · Se revisó hace 5 meses

Sobhan N. · Se revisó hace 5 meses

Balaji r. · Se revisó hace 5 meses

took 16 minutes to train that keras model. too long. it's also a weird wide + deep neural net from 2017. probably deprecated in 2025

Alexei C. · Se revisó hace 5 meses

Sujay H. · Se revisó hace 5 meses

Facundo A. · Se revisó hace 5 meses

Camilo G. · Se revisó hace 5 meses

Thomas N. · Se revisó hace 5 meses

Asitho D. · Se revisó hace 5 meses

thanks

hicham h. · Se revisó hace 5 meses

Zahra M. · Se revisó hace 5 meses

Ashwin P. · Se revisó hace 5 meses

Yuchieh Cheng 鄭宇傑 E. · Se revisó hace 5 meses

Deepak B. · Se revisó hace 5 meses

Tristan L. · Se revisó hace 5 meses

ERROR: (gcloud.ai-platform.jobs.submit.training) FAILED_PRECONDITION: Constraint `constraints/gcp.resourceLocations` violated for `projects/qwiklabs-gcp-00-0ac1d33a0acf`: region `us-central1` not allowed. See https://cloud.google.com/resource-manager/docs/organization-policy/defining-locations for details. - '@type': type.googleapis.com/google.rpc.PreconditionFailure violations: - description: 'Constraint `constraints/gcp.resourceLocations` violated for `projects/qwiklabs-gcp-00-0ac1d33a0acf`: region `us-central1` not allowed. See https://cloud.google.com/resource-manager/docs/organization-policy/defining-locations for details.' subject: orgpolicy:projects/qwiklabs-gcp-00-0ac1d33a0acf type: constraints/gcp.resourceLocations --------------------------------------------------------------------------- CalledProcessError Traceback (most recent call last) Cell In[21], line 1 ----> 1 get_ipython().run_cell_magic('bash', '', '\nOUTDIR=gs://${BUCKET}/babyweight/trained_model\nJOBID=babyweight_$(date -u +%y%m%d_%H%M%S)\n\ngcloud ai-platform jobs submit training ${JOBID} \\\n --region=${REGION} \\\n --module-name=trainer.task \\\n --package-path=$(pwd)/babyweight/trainer \\\n --job-dir=${OUTDIR} \\\n --staging-bucket=gs://${BUCKET} \\\n --master-machine-type=n1-standard-8 \\\n --scale-tier=CUSTOM \\\n --runtime-version=${TFVERSION} \\\n --python-version=${PYTHONVERSION} \\\n -- \\\n --train_data_path=gs://${BUCKET}/babyweight/data/train*.csv \\\n --eval_data_path=gs://${BUCKET}/babyweight/data/eval*.csv \\\n --output_dir=${OUTDIR} \\\n --num_epochs=10 \\\n --train_examples=10000 \\\n --eval_steps=100 \\\n --batch_size=32 \\\n --nembeds=8\n') File /opt/conda/lib/python3.10/site-packages/IPython/core/interactiveshell.py:2517, in InteractiveShell.run_cell_magic(self, magic_name, line, cell) 2515 with self.builtin_trap: 2516 args = (magic_arg_s, cell) -> 2517 result = fn(*args, **kwargs) 2519 # The code below prevents the output from being displayed 2520 # when using magics with decorator @output_can_be_silenced 2521 # when the last Python token in the expression is a ';'. 2522 if getattr(fn, magic.MAGIC_OUTPUT_CAN_BE_SILENCED, False): File /opt/conda/lib/python3.10/site-packages/IPython/core/magics/script.py:154, in ScriptMagics._make_script_magic.<locals>.named_script_magic(line, cell) 152 else: 153 line = script --> 154 return self.shebang(line, cell) File /opt/conda/lib/python3.10/site-packages/IPython/core/magics/script.py:314, in ScriptMagics.shebang(self, line, cell) 309 if args.raise_error and p.returncode != 0: 310 # If we get here and p.returncode is still None, we must have 311 # killed it but not yet seen its return code. We don't wait for it, 312 # in case it's stuck in uninterruptible sleep. -9 = SIGKILL 313 rc = p.returncode or -9 --> 314 raise CalledProcessError(rc, cell) CalledProcessError: Command 'b'\nOUTDIR=gs://${BUCKET}/babyweight/trained_model\nJOBID=babyweight_$(date -u +%y%m%d_%H%M%S)\n\ngcloud ai-platform jobs submit training ${JOBID} \\\n --region=${REGION} \\\n --module-name=trainer.task \\\n --package-path=$(pwd)/babyweight/trainer \\\n --job-dir=${OUTDIR} \\\n --staging-bucket=gs://${BUCKET} \\\n --master-machine-type=n1-standard-8 \\\n --scale-tier=CUSTOM \\\n --runtime-version=${TFVERSION} \\\n --python-version=${PYTHONVERSION} \\\n -- \\\n --train_data_path=gs://${BUCKET}/babyweight/data/train*.csv \\\n --eval_data_path=gs://${BUCKET}/babyweight/data/eval*.csv \\\n --output_dir=${OUTDIR} \\\n --num_epochs=10 \\\n --train_examples=10000 \\\n --eval_steps=100 \\\n --batch_size=32 \\\n --nembeds=8\n'' returned non-zero exit status 1.

Carlos Fernando S. · Se revisó hace 5 meses

All graded tasks are completing. However, the issue is in the notebook, showing errors during the deployment..

Arnel Perez P. · Se revisó hace 5 meses

The deploy code had a problem with the region

Abimael A. · Se revisó hace 5 meses

Angeline J. · Se revisó hace 5 meses

Ana A M. · Se revisó hace 5 meses

Klaudia K. · Se revisó hace 5 meses

Showkat H. · Se revisó hace 5 meses

No garantizamos que las opiniones publicadas provengan de consumidores que hayan comprado o utilizado los productos. Google no verifica las opiniones.