关于“Performing Basic Feature Engineering in Keras”的评价
10296 条评价
Andrea G. · 已于 over 3 years前审核
Kiana Alessandra V. · 已于 over 3 years前审核
M R. · 已于 over 3 years前审核
Mario R. · 已于 over 3 years前审核
Brandon G. · 已于 over 3 years前审核
Ang X. · 已于 over 3 years前审核
Sanjay B. · 已于 over 3 years前审核
Clive N. · 已于 over 3 years前审核
Sanjay B. · 已于 over 3 years前审核
Cheikh T. · 已于 over 3 years前审核
chhaya s. · 已于 over 3 years前审核
very difficult.
Steven S. · 已于 over 3 years前审核
Sergio Adriano L. · 已于 over 3 years前审核
Brenno M. · 已于 over 3 years前审核
Takashi D. · 已于 over 3 years前审核
Nicolo L. · 已于 over 3 years前审核
Corinna F. · 已于 over 3 years前审核
Sophie S. · 已于 over 3 years前审核
Guilherme A. · 已于 over 3 years前审核
Guilherme A. · 已于 over 3 years前审核
Sometimes methods for loading in data is confusing.
Tiego T. · 已于 over 3 years前审核
Xiaohui L. · 已于 over 3 years前审核
Mojtaba G. · 已于 over 3 years前审核
Finally got through the lab after a few attempts, the use of the min max function here, which relies on pandas functionality, is not intuitive. I would have preferred if we instead used a normalization layer which is native to tensorflow. Furthermore, setting random seeds so the work is reproducible/verifiable would be helpful in quantifying the model improvements and incorporating that in the notebook. The instructions for predictions on the test dataset weren't very clear to me. I think there's a missed opportunity here to do things like [(X, y)] = test_ds.take(1), model.predict(X), and likewise feature_layer(X) to help the student understand what's happening under the good. Thank you!
Pritam D. · 已于 over 3 years前审核
Samuel D. · 已于 over 3 years前审核
我们无法确保发布的评价来自已购买或已使用产品的消费者。评价未经 Google 核实。