Performing Basic Feature Engineering in Keras Reviews
10297 reviews
pushpalatha c. · Reviewed מעל 3 שנים ago
Andrea G. · Reviewed מעל 3 שנים ago
Kiana Alessandra V. · Reviewed מעל 3 שנים ago
M R. · Reviewed מעל 3 שנים ago
Mario R. · Reviewed מעל 3 שנים ago
Brandon G. · Reviewed מעל 3 שנים ago
Ang X. · Reviewed מעל 3 שנים ago
Sanjay B. · Reviewed מעל 3 שנים ago
Clive N. · Reviewed מעל 3 שנים ago
Sanjay B. · Reviewed מעל 3 שנים ago
Cheikh T. · Reviewed מעל 3 שנים ago
chhaya s. · Reviewed מעל 3 שנים ago
very difficult.
Steven S. · Reviewed מעל 3 שנים ago
Sergio Adriano L. · Reviewed מעל 3 שנים ago
Brenno M. · Reviewed מעל 3 שנים ago
Takashi D. · Reviewed מעל 3 שנים ago
Nicolo L. · Reviewed מעל 3 שנים ago
Corinna F. · Reviewed מעל 3 שנים ago
Sophie S. · Reviewed מעל 3 שנים ago
Guilherme A. · Reviewed מעל 3 שנים ago
Guilherme A. · Reviewed מעל 3 שנים ago
Sometimes methods for loading in data is confusing.
Tiego T. · Reviewed מעל 3 שנים ago
Xiaohui L. · Reviewed מעל 3 שנים ago
Mojtaba G. · Reviewed מעל 3 שנים ago
Finally got through the lab after a few attempts, the use of the min max function here, which relies on pandas functionality, is not intuitive. I would have preferred if we instead used a normalization layer which is native to tensorflow. Furthermore, setting random seeds so the work is reproducible/verifiable would be helpful in quantifying the model improvements and incorporating that in the notebook. The instructions for predictions on the test dataset weren't very clear to me. I think there's a missed opportunity here to do things like [(X, y)] = test_ds.take(1), model.predict(X), and likewise feature_layer(X) to help the student understand what's happening under the good. Thank you!
Pritam D. · Reviewed מעל 3 שנים ago
We do not ensure the published reviews originate from consumers who have purchased or used the products. Reviews are not verified by Google.