关于“Performing Advanced Feature Engineering in Keras”的评价
正在加载…
未找到任何结果。

在 Google Cloud 控制台中运用您的技能

关于“Performing Advanced Feature Engineering in Keras”的评价

9475 条评价

vikas m. · 已于 over 1 year前审核

Suchitra P. · 已于 over 1 year前审核

Jagdeep S. · 已于 over 1 year前审核

Stéphane V. · 已于 over 1 year前审核

Yogesh R. · 已于 over 1 year前审核

Angeline R. · 已于 over 1 year前审核

Myroslav L. · 已于 over 1 year前审核

Archit A. · 已于 over 1 year前审核

Gilvan d. · 已于 over 1 year前审核

Jimmy F. · 已于 over 1 year前审核

Guillaume L. · 已于 over 1 year前审核

Denis Ž. · 已于 over 1 year前审核

José P. · 已于 over 1 year前审核

Saksham K. · 已于 over 1 year前审核

sujit c. · 已于 over 1 year前审核

Ajay A. · 已于 over 1 year前审核

Gonzalo L. · 已于 over 1 year前审核

HARISH KUMAR S. · 已于 over 1 year前审核

This lab should be a 2 hour lab, at least. Indications for TODOs can be clearer (i.e.: step by step description of what needs to be done without code, then the student can look in the reference of tf.feature_column by itself). Maybe this lab can be outdated, since tf.feature_column is deprecated and will not be further supported (since keras FeatureSpace is advised in place of tf.feature_column according to your tensorflow 2.15 doc).

Alessandro M. · 已于 over 1 year前审核

Chandan P. · 已于 over 1 year前审核

Vicente M. · 已于 over 1 year前审核

Sitaram V. · 已于 over 1 year前审核

Julius L. · 已于 over 1 year前审核

Michael R. · 已于 over 1 year前审核

great

Animan k. · 已于 over 1 year前审核

我们无法确保发布的评价来自已购买或已使用产品的消费者。评价未经 Google 核实。