Criar modelos de ML com o BigQuery ML: laboratório com desafio avaliações
37270 avaliações
Vinod K. · Revisado há about 1 year
The third task check doesnt work
Diego F. · Revisado há about 1 year
MIS AB V. · Revisado há about 1 year
Leonard Mensah B. · Revisado há about 1 year
Olga B. · Revisado há about 1 year
Yomna M. · Revisado há about 1 year
Jovan C. · Revisado há about 1 year
Ajeesh B. · Revisado há about 1 year
The lab doesn't work properly
Zuzanna M. · Revisado há about 1 year
Kevin C. · Revisado há about 1 year
I don't understand the task descriptions??? sometimes it says linear and sometimes logistic, I don't know what is the purpose of the task to be done
Zuzanna M. · Revisado há about 1 year
Christian A. · Revisado há about 1 year
Patrick L. · Revisado há about 1 year
Halimathu S. · Revisado há about 1 year
Bhagyashree P. · Revisado há about 1 year
Aman N. · Revisado há about 1 year
Camille H. · Revisado há about 1 year
Zhenru C. · Revisado há about 1 year
Zhenru C. · Revisado há about 1 year
Жандос О. · Revisado há about 1 year
Octavia R. · Revisado há about 1 year
Task 3 doesn't work
Pierpaolo S. · Revisado há about 1 year
Md I. · Revisado há about 1 year
Ozana I. · Revisado há about 1 year
I finished Task 3 by creating and evaluating the new model improved_customer_classification_model with the required additional features, but it would never mark it as complete. Here's the query I used to create the model: CREATE OR REPLACE MODEL `ecommerce.improved_customer_classification_model` OPTIONS ( model_type='logistic_reg', labels = ['will_buy_on_return_visit'] ) AS #standardSQL SELECT * EXCEPT(fullVisitorId) FROM # features (SELECT fullVisitorId, IFNULL(totals.bounces, 0) AS bounces, IFNULL(totals.timeOnSite, 0) AS time_on_site, IFNULL(totals.pageviews, 0) AS pageviews, trafficSource.source, trafficSource.medium, channelGrouping, # mobile or desktop device.deviceCategory, # geographic IFNULL(geoNetwork.country, "") AS country FROM `data-to-insights.ecommerce.web_analytics` WHERE totals.newVisits = 1 AND date BETWEEN '20160801' AND '20170430') # train on first 9 months JOIN (SELECT fullvisitorid, IF(COUNTIF(totals.transactions > 0 AND totals.newVisits IS NULL) > 0, 1, 0) AS will_buy_on_return_visit FROM `data-to-insights.ecommerce.web_analytics` GROUP BY fullvisitorid) USING (fullVisitorId) ; And here's how I evaluated it: SELECT roc_auc, CASE WHEN roc_auc > .9 THEN 'good' WHEN roc_auc > .8 THEN 'fair' WHEN roc_auc > .7 THEN 'decent' WHEN roc_auc > .6 THEN 'not great' ELSE 'poor' END AS model_quality FROM ML.EVALUATE(MODEL ecommerce.improved_customer_classification_model, ( #standardSQL SELECT * EXCEPT(fullVisitorId) FROM # features (SELECT fullVisitorId, IFNULL(totals.bounces, 0) AS bounces, IFNULL(totals.timeOnSite, 0) AS time_on_site, IFNULL(totals.pageviews, 0) AS pageviews, trafficSource.source, trafficSource.medium, channelGrouping, # mobile or desktop device.deviceCategory, # geographic IFNULL(geoNetwork.country, "") AS country FROM `data-to-insights.ecommerce.web_analytics` WHERE totals.newVisits = 1 AND date BETWEEN '20160801' AND '20170430') # train on first 9 months JOIN (SELECT fullvisitorid, IF(COUNTIF(totals.transactions > 0 AND totals.newVisits IS NULL) > 0, 1, 0) AS will_buy_on_return_visit FROM `data-to-insights.ecommerce.web_analytics` GROUP BY fullvisitorid) USING (fullVisitorId) ));
Adam W. · Revisado há about 1 year
Não garantimos que as avaliações publicadas sejam de consumidores que compraram ou usaram os produtos. As avaliações não são verificadas pelo Google.