Create ML Models with BigQuery ML: Challenge Lab avis
40865 avis
The lab doesn't work properly
Zuzanna M. · Examiné il y a plus d'un an
Kevin C. · Examiné il y a plus d'un an
I don't understand the task descriptions??? sometimes it says linear and sometimes logistic, I don't know what is the purpose of the task to be done
Zuzanna M. · Examiné il y a plus d'un an
Christian A. · Examiné il y a plus d'un an
Patrick L. · Examiné il y a plus d'un an
Halimathu S. · Examiné il y a plus d'un an
Bhagyashree P. · Examiné il y a plus d'un an
Aman N. · Examiné il y a plus d'un an
Camille H. · Examiné il y a plus d'un an
Zhenru C. · Examiné il y a plus d'un an
Zhenru C. · Examiné il y a plus d'un an
Жандос О. · Examiné il y a plus d'un an
Octavia R. · Examiné il y a plus d'un an
Task 3 doesn't work
Pierpaolo S. · Examiné il y a plus d'un an
Md I. · Examiné il y a plus d'un an
Ozana I. · Examiné il y a plus d'un an
I finished Task 3 by creating and evaluating the new model improved_customer_classification_model with the required additional features, but it would never mark it as complete. Here's the query I used to create the model: CREATE OR REPLACE MODEL `ecommerce.improved_customer_classification_model` OPTIONS ( model_type='logistic_reg', labels = ['will_buy_on_return_visit'] ) AS #standardSQL SELECT * EXCEPT(fullVisitorId) FROM # features (SELECT fullVisitorId, IFNULL(totals.bounces, 0) AS bounces, IFNULL(totals.timeOnSite, 0) AS time_on_site, IFNULL(totals.pageviews, 0) AS pageviews, trafficSource.source, trafficSource.medium, channelGrouping, # mobile or desktop device.deviceCategory, # geographic IFNULL(geoNetwork.country, "") AS country FROM `data-to-insights.ecommerce.web_analytics` WHERE totals.newVisits = 1 AND date BETWEEN '20160801' AND '20170430') # train on first 9 months JOIN (SELECT fullvisitorid, IF(COUNTIF(totals.transactions > 0 AND totals.newVisits IS NULL) > 0, 1, 0) AS will_buy_on_return_visit FROM `data-to-insights.ecommerce.web_analytics` GROUP BY fullvisitorid) USING (fullVisitorId) ; And here's how I evaluated it: SELECT roc_auc, CASE WHEN roc_auc > .9 THEN 'good' WHEN roc_auc > .8 THEN 'fair' WHEN roc_auc > .7 THEN 'decent' WHEN roc_auc > .6 THEN 'not great' ELSE 'poor' END AS model_quality FROM ML.EVALUATE(MODEL ecommerce.improved_customer_classification_model, ( #standardSQL SELECT * EXCEPT(fullVisitorId) FROM # features (SELECT fullVisitorId, IFNULL(totals.bounces, 0) AS bounces, IFNULL(totals.timeOnSite, 0) AS time_on_site, IFNULL(totals.pageviews, 0) AS pageviews, trafficSource.source, trafficSource.medium, channelGrouping, # mobile or desktop device.deviceCategory, # geographic IFNULL(geoNetwork.country, "") AS country FROM `data-to-insights.ecommerce.web_analytics` WHERE totals.newVisits = 1 AND date BETWEEN '20160801' AND '20170430') # train on first 9 months JOIN (SELECT fullvisitorid, IF(COUNTIF(totals.transactions > 0 AND totals.newVisits IS NULL) > 0, 1, 0) AS will_buy_on_return_visit FROM `data-to-insights.ecommerce.web_analytics` GROUP BY fullvisitorid) USING (fullVisitorId) ));
Adam W. · Examiné il y a plus d'un an
Kevin C. · Examiné il y a plus d'un an
Juan Carlos B. · Examiné il y a plus d'un an
Manish S. · Examiné il y a plus d'un an
Jesús Arnulfo C. · Examiné il y a plus d'un an
Ilyas N. · Examiné il y a plus d'un an
William B. · Examiné il y a plus d'un an
Shannon M. · Examiné il y a plus d'un an
Shannon M. · Examiné il y a plus d'un an
Nous ne pouvons pas certifier que les avis publiés proviennent de consommateurs qui ont acheté ou utilisé les produits. Les avis ne sont pas vérifiés par Google.