GSP1265

Übersicht
Die Gemini API bietet eine Funktion zum Kontext-Caching, mit der Entwickler häufig verwendete Eingabe-Tokens in einem dedizierten Cache speichern und bei nachfolgenden Anfragen darauf verweisen können. So müssen nicht immer wieder dieselben Tokens in ein Modell eingegeben werden. Mit dieser Funktion können Sie die Anzahl der an das Modell gesendeten Tokens reduzieren. So lassen sich die Kosten für Anfragen senken, die wiederkehrende Inhalte mit vielen Eingabetokens enthalten. In diesem Lab erfahren Sie, wie Sie die Funktion zum Speichern von Kontextdaten in der Gemini API in Vertex AI verwenden.
Gemini
Gemini umfasst eine Reihe leistungsstarker generativer KI-Modelle, die von Google DeepMind entwickelt wurden. Diese können verschiedene Formen von Inhalten verstehen und erstellen, darunter Text, Code, Bilder, Audio und Video.
Gemini API in Vertex AI
Die Gemini API in Vertex AI bietet eine einheitliche Benutzeroberfläche für die Interaktion mit Gemini-Modellen. Darüber können Entwickler die leistungsstarken KI-Funktionen ohne viel Aufwand in ihre Anwendungen integrieren. Aktuelle Informationen und besondere Merkmale der neuesten Versionen finden Sie in der offiziellen Dokumentation zu Gemini.
Gemini-Modelle
-
Gemini Pro – entwickelt für komplexe Schlussfolgerungen, darunter:
- Analysieren und Zusammenfassen großer Mengen von Informationen
- Ausgereifte multimodale Schlussfolgerungen (zu Text, Code, Bildern usw.)
- Effektive Problemlösung mit komplexer Codebasis
-
Gemini Flash – für Geschwindigkeit und Effizienz optimiert, bietet folgende Vorteile:
- Reaktionszeiten unter einer Sekunde und hoher Durchsatz
- Hohe Qualität zu niedrigeren Kosten für eine Vielzahl von Aufgaben
- Erweiterte multimodale Funktionen, einschließlich der Verwendung nativer Tools (Google Suche, Codeausführung und Funktionen von Drittanbietern), verbesserter räumlicher Strukturen und neuer Ausgabemodalitäten (Text, Audio, Bilder)
Vorbereitung
Für dieses Lab sollten Sie folgende Konzepte kennen:
- Grundlegende Kenntnisse der Programmierung mit Python
- Grundlegende API-Konzepte
- Ausführen von Python-Code in einem Jupyter-Notebook in Vertex AI Workbench
Lernziele
Aufgaben in diesem Lab:
- Kontext-Cache erstellen
- Kontext-Cache abrufen und verwenden
- Kontext-Caching in Chats verwenden
- Ablaufzeit eines Kontext-Caches aktualisieren
- Kontext-Cache löschen
Einrichtung und Anforderungen
Vor dem Klick auf „Start Lab“ (Lab starten)
Lesen Sie diese Anleitung. Labs sind zeitlich begrenzt und können nicht pausiert werden. Der Timer beginnt zu laufen, wenn Sie auf Lab starten klicken, und zeigt Ihnen, wie lange Google Cloud-Ressourcen für das Lab verfügbar sind.
In diesem praxisorientierten Lab können Sie die Lab-Aktivitäten in einer echten Cloud-Umgebung durchführen – nicht in einer Simulations- oder Demo-Umgebung. Dazu erhalten Sie neue, temporäre Anmeldedaten, mit denen Sie für die Dauer des Labs auf Google Cloud zugreifen können.
Für dieses Lab benötigen Sie Folgendes:
- Einen Standardbrowser (empfohlen wird Chrome)
Hinweis: Nutzen Sie den privaten oder Inkognitomodus (empfohlen), um dieses Lab durchzuführen. So wird verhindert, dass es zu Konflikten zwischen Ihrem persönlichen Konto und dem Teilnehmerkonto kommt und zusätzliche Gebühren für Ihr persönliches Konto erhoben werden.
- Zeit für die Durchführung des Labs – denken Sie daran, dass Sie ein begonnenes Lab nicht unterbrechen können.
Hinweis: Verwenden Sie für dieses Lab nur das Teilnehmerkonto. Wenn Sie ein anderes Google Cloud-Konto verwenden, fallen dafür möglicherweise Kosten an.
Lab starten und bei der Google Cloud Console anmelden
-
Klicken Sie auf Lab starten. Wenn Sie für das Lab bezahlen müssen, wird ein Dialogfeld geöffnet, in dem Sie Ihre Zahlungsmethode auswählen können.
Auf der linken Seite befindet sich der Bereich „Details zum Lab“ mit diesen Informationen:
- Schaltfläche „Google Cloud Console öffnen“
- Restzeit
- Temporäre Anmeldedaten für das Lab
- Ggf. weitere Informationen für dieses Lab
-
Klicken Sie auf Google Cloud Console öffnen (oder klicken Sie mit der rechten Maustaste und wählen Sie Link in Inkognitofenster öffnen aus, wenn Sie Chrome verwenden).
Im Lab werden Ressourcen aktiviert. Anschließend wird ein weiterer Tab mit der Seite „Anmelden“ geöffnet.
Tipp: Ordnen Sie die Tabs nebeneinander in separaten Fenstern an.
Hinweis: Wird das Dialogfeld Konto auswählen angezeigt, klicken Sie auf Anderes Konto verwenden.
-
Kopieren Sie bei Bedarf den folgenden Nutzernamen und fügen Sie ihn in das Dialogfeld Anmelden ein.
{{{user_0.username | "Username"}}}
Sie finden den Nutzernamen auch im Bereich „Details zum Lab“.
-
Klicken Sie auf Weiter.
-
Kopieren Sie das folgende Passwort und fügen Sie es in das Dialogfeld Willkommen ein.
{{{user_0.password | "Password"}}}
Sie finden das Passwort auch im Bereich „Details zum Lab“.
-
Klicken Sie auf Weiter.
Wichtig: Sie müssen die für das Lab bereitgestellten Anmeldedaten verwenden. Nutzen Sie nicht die Anmeldedaten Ihres Google Cloud-Kontos.
Hinweis: Wenn Sie Ihr eigenes Google Cloud-Konto für dieses Lab nutzen, können zusätzliche Kosten anfallen.
-
Klicken Sie sich durch die nachfolgenden Seiten:
- Akzeptieren Sie die Nutzungsbedingungen.
- Fügen Sie keine Wiederherstellungsoptionen oder Zwei-Faktor-Authentifizierung hinzu (da dies nur ein temporäres Konto ist).
- Melden Sie sich nicht für kostenlose Testversionen an.
Nach wenigen Augenblicken wird die Google Cloud Console in diesem Tab geöffnet.
Hinweis: Wenn Sie auf Google Cloud-Produkte und ‑Dienste zugreifen möchten, klicken Sie auf das Navigationsmenü oder geben Sie den Namen des Produkts oder Dienstes in das Feld Suchen ein.
Aufgabe 1: Notebook in Vertex AI Workbench öffnen
-
Klicken Sie in der Google Cloud Console im Navigationsmenü (
) auf Vertex AI > Workbench.
-
Suchen Sie die Instanz und klicken Sie auf JupyterLab öffnen.
Die JupyterLab-Oberfläche für Ihre Workbench-Instanz wird in einem neuen Browsertab geöffnet.
Hinweis: Wenn in JupyterLab keine Notebooks angezeigt werden, führen Sie die folgenden zusätzlichen Schritte aus, um die Instanz zurückzusetzen:
1. Schließen Sie den Browsertab für JupyterLab und kehren Sie zur Workbench-Startseite zurück.
2. Aktivieren Sie das Kästchen neben dem Instanznamen und klicken Sie dann auf Zurücksetzen.
3. Nachdem die Schaltfläche JupyterLab öffnen wieder aktiviert ist, warten Sie eine Minute und klicken Sie dann auf JupyterLab öffnen.
Aufgabe 2: Notebook einrichten
-
Öffnen Sie die -Datei.
-
Wählen Sie im Dialogfeld Kernel auswählen in der Liste der verfügbaren Kernel die Option Python 3 aus.
-
Gehen Sie die Abschnitte Erste Schritte und Bibliotheken importieren des Notebooks durch.
- Verwenden Sie als Projekt-ID den Wert und als Standort die Option .
Hinweis: Notebookzellen mit dem Hinweis Nur Colab können Sie überspringen. Wenn Sie bei der Ausführung einer der Notebook-Zellen eine 429-Antwort erhalten, warten Sie eine Minute, bevor Sie die Zelle noch einmal ausführen und dann fortfahren.
Klicken Sie auf Fortschritt prüfen.
Pakete installieren und Bibliotheken importieren
Aufgabe 3: Kontext-Cache erstellen
- Gehen Sie den Abschnitt Kontext-Cache erstellen im Notebook durch.
Klicken Sie auf Fortschritt prüfen.
Kontext-Cache erstellen
Aufgabe 4: Kontext-Cache abrufen und verwenden
- Gehen Sie den Abschnitt Kontext-Cache abrufen und verwenden im Notebook durch.
Klicken Sie auf Fortschritt prüfen.
Generatives Modell erstellen und Modell mit Prompt abfragen
Aufgabe 5: Kontext-Caching in Chats verwenden
- Gehen Sie den Abschnitt Context Caching in Chats verwenden im Notebook durch.
Klicken Sie auf Fortschritt prüfen.
Kontext-Cache in einer Session mit Multi-Turn-Unterhaltung verwenden
Aufgabe 6: Ablaufzeit eines Kontext-Caches aktualisieren
- Gehen Sie den Abschnitt Ablaufzeit eines Kontext-Caches aktualisieren im Notebook durch.
Klicken Sie auf Fortschritt prüfen.
Ablaufzeit des Kontext-Caches aktualisieren
Aufgabe 7: Kontext-Cache löschen
- Führen Sie den Abschnitt Kontext-Cache löschen im Notebook aus.
Klicken Sie auf Fortschritt prüfen.
Kontext-Cache löschen
Das wars!
Sie haben das Lab erfolgreich abgeschlossen. In diesem Lab haben Sie gelernt, wie Sie die Funktion zum Speichern von Kontextdaten in der Gemini API in Vertex AI verwenden. Sie haben einen Kontext-Cache erstellt, einen Kontext-Cache abgerufen und verwendet, Kontext-Caching in Chats verwendet, die Ablaufzeit eines Kontext-Caches aktualisiert und einen Kontext-Cache gelöscht.
Weitere Informationen
In den folgenden Ressourcen finden Sie weitere Informationen zu Gemini:
Google Cloud-Schulungen und -Zertifizierungen
In unseren Schulungen erfahren Sie alles zum optimalen Einsatz unserer Google Cloud-Technologien und können sich entsprechend zertifizieren lassen. Unsere Kurse vermitteln technische Fähigkeiten und Best Practices, damit Sie möglichst schnell mit Google Cloud loslegen und Ihr Wissen fortlaufend erweitern können. Wir bieten On-Demand-, Präsenz- und virtuelle Schulungen für Anfänger wie Fortgeschrittene an, die Sie individuell in Ihrem eigenen Zeitplan absolvieren können. Mit unseren Zertifizierungen weisen Sie nach, dass Sie Experte im Bereich Google Cloud-Technologien sind.
Anleitung zuletzt am 19. Mai 2025 aktualisiert
Lab zuletzt am 19. Mai 2025 getestet
© 2025 Google LLC. Alle Rechte vorbehalten. Google und das Google-Logo sind Marken von Google LLC. Alle anderen Unternehmens- und Produktnamen können Marken der jeweils mit ihnen verbundenen Unternehmen sein.