Wczytuję…
Nie znaleziono wyników.

Google Cloud Skills Boost

Wykorzystuj swoje umiejętności w konsoli Google Cloud


Zyskaj dostęp do ponad 700 modułów i kursów

Getting Started with Google Search as a Tool with Gemini in Vertex AI

Moduł 1 godz. 30 godz. universal_currency_alt 1 punkt show_chart Wprowadzające
info Ten moduł może zawierać narzędzia AI, które ułatwią Ci naukę.
Zyskaj dostęp do ponad 700 modułów i kursów

GSP1264

Google Cloud self-paced labs logo

Overview

Grounding in Vertex AI lets you use generative text models to generate content grounded in your own documents and data. This capability lets the model access information at runtime that goes beyond its training data. By grounding model responses in Google Search results or data stores within Vertex AI Search, LLMs that are grounded in data can produce more accurate, up-to-date, and relevant responses.

Grounding provides the following benefits:

Reduces model hallucinations (instances where the model generates content that isn't factual) Anchors model responses to specific information, documents, and data sources Enhances the trustworthiness, accuracy, and applicability of the generated content

You can configure two different sources of grounding in Vertex AI:

  1. Google Search results for data that is publicly available and indexed.
  1. Data stores in Vertex AI Search, which can include your own data in the form of website data, unstructured data, or structured data

Gemini

Gemini is a family of powerful generative AI models developed by Google DeepMind, capable of understanding and generating various forms of content, including text, code, images, audio, and video.

Gemini API in Vertex AI

The Gemini API in Vertex AI provides a unified interface for interacting with Gemini models. This allows developers to easily integrate these powerful AI capabilities into their applications. For the most up-to-date details and specific features of the latest versions, please refer to the official Gemini documentation.

Gemini Models

  • Gemini Pro: Designed for complex reasoning, including:
    • Analyzing and summarizing large amounts of information.
    • Sophisticated cross-modal reasoning (across text, code, images, etc.).
    • Effective problem-solving with complex codebases.
  • Gemini Flash: Optimized for speed and efficiency, offering:
    • Sub-second response times and high throughput.
    • High quality at a lower cost for a wide range of tasks.
    • Enhanced multimodal capabilities, including improved spatial understanding, new output modalities (text, audio, images), and native tool use (Google Search, code execution, and third-party functions).

Prerequisites

Before starting this lab, you should be familiar with:

  • Basic Python programming.
  • General API concepts.
  • Running Python code in a Jupyter notebook on Vertex AI Workbench.

Objectives

In this lab, you learn how to:

  • Generate LLM text and chat model responses grounded in Google Search results.
  • Compare the results of ungrounded LLM responses with grounded LLM responses.
  • Create and use a data store in Vertex AI Search to ground responses in custom documents and data.
  • Generate LLM text and chat model responses grounded in Vertex AI Search results.

Setup and requirements

Before you click the Start Lab button

Read these instructions. Labs are timed and you cannot pause them. The timer, which starts when you click Start Lab, shows how long Google Cloud resources are made available to you.

This hands-on lab lets you do the lab activities in a real cloud environment, not in a simulation or demo environment. It does so by giving you new, temporary credentials you use to sign in and access Google Cloud for the duration of the lab.

To complete this lab, you need:

  • Access to a standard internet browser (Chrome browser recommended).
Note: Use an Incognito (recommended) or private browser window to run this lab. This prevents conflicts between your personal account and the student account, which may cause extra charges incurred to your personal account.
  • Time to complete the lab—remember, once you start, you cannot pause a lab.
Note: Use only the student account for this lab. If you use a different Google Cloud account, you may incur charges to that account.

How to start your lab and sign in to the Google Cloud console

  1. Click the Start Lab button. If you need to pay for the lab, a dialog opens for you to select your payment method. On the left is the Lab Details pane with the following:

    • The Open Google Cloud console button
    • Time remaining
    • The temporary credentials that you must use for this lab
    • Other information, if needed, to step through this lab
  2. Click Open Google Cloud console (or right-click and select Open Link in Incognito Window if you are running the Chrome browser).

    The lab spins up resources, and then opens another tab that shows the Sign in page.

    Tip: Arrange the tabs in separate windows, side-by-side.

    Note: If you see the Choose an account dialog, click Use Another Account.
  3. If necessary, copy the Username below and paste it into the Sign in dialog.

    {{{user_0.username | "Username"}}}

    You can also find the Username in the Lab Details pane.

  4. Click Next.

  5. Copy the Password below and paste it into the Welcome dialog.

    {{{user_0.password | "Password"}}}

    You can also find the Password in the Lab Details pane.

  6. Click Next.

    Important: You must use the credentials the lab provides you. Do not use your Google Cloud account credentials. Note: Using your own Google Cloud account for this lab may incur extra charges.
  7. Click through the subsequent pages:

    • Accept the terms and conditions.
    • Do not add recovery options or two-factor authentication (because this is a temporary account).
    • Do not sign up for free trials.

After a few moments, the Google Cloud console opens in this tab.

Note: To access Google Cloud products and services, click the Navigation menu or type the service or product name in the Search field. Navigation menu icon and Search field

Task 1. Open the notebook in Vertex AI Workbench

  1. In the Google Cloud console, on the Navigation menu (Navigation menu icon), click Vertex AI > Workbench.

  2. Find the instance and click on the Open JupyterLab button.

The JupyterLab interface for your Workbench instance opens in a new browser tab.

Task 2. Set up the notebook

  1. Open the file.

  2. In the Select Kernel dialog, choose Python 3 from the list of available kernels.

  3. Run through the Getting Started and the Import libraries sections of the notebook.

    • For Project ID, use , and for Location, use .
Note: You can skip any notebook cells that are noted Colab only. If you experience a 429 response from any of the notebook cell executions, wait 1 minute before running the cell again to proceed.

Click Check my progress to verify the objective. Install packages and import libraries

Task 3. Grounding with Google Search results

  1. Run the Example: Grounding with Google Search results section of the notebook.

Click Check my progress to verify the objective. Grounding with Google Search results

Task 4. Create a Vertex AI Datastore

In this section, you will create a Vertex AI Datastore in Cloud Console.

  1. In the top search box, enter AI Applications and select AI Applications from the results.

  2. On the Welcome to AI Applications landing page click CONTINUE AND ACTIVATE THE API.

  3. Go to the Data Stores > Create data store page.

  4. In the Select a data source pane, select Cloud Storage.

  5. In the Import data from Cloud Storage pane, select Unstructured documents (PDF, HTML, TXT and more).

  6. Make sure Folder is selected

  7. In the gs:// field, enter the following value and click Continue:

cloud-samples-data/gen-app-builder/search/cymbal-bank-employee
  1. In the Configure your data store pane, select global (Global) as the location for your data store.

  2. Enter a name for your data store. Note the ID that is generated. You'll need this later.

  3. Click Create.

Click Check my progress to verify the objective. Create a Vertex AI Datastore

Task 5. Create a Vertex AI Search Application

In this section, you will create a Vertex AI Search Application in Cloud Console.

  1. Go to the Apps > Create App page.

  2. On the Create App page, under Search for your website, click Create.

  3. Make sure that Enterprise edition features is turned on.

  4. In the Your app name field, enter a name for your app. Your app ID appears under the app name.

  5. In the External name of your company or organization field, enter the company or organization name. For this tutorial, you can use Google Cloud, because the app will search a Google Cloud website.

  6. Select global (Global) as the location for your app, and then click Continue.

  7. In the list of data stores, select the data store that you created earlier, and then click Create.

Note: Once created, you will need to wait at least 5-10 minutes for the application to index the content to search. Wait for the index to create before proceeding to the next cells of the notebook. Take note of the Apps' ID for inputting into the notebook where required.

Click Check my progress to verify the objective. Create a Vertex AI Search Application

Task 6. Grounding with custom documents and data

  1. Run through the Example: Grounding with custom documents and data section of the notebook. Use the datastore ID created in the previous tasks where required.

Click Check my progress to verify the objective. Grounding with custom documents and data

Task 7. Grounded chat responses

  1. Run through the Example: Grounded chat responses section of the notebook.

Click Check my progress to verify the objective. Grounded chat responses

Congratulations!

In this lab, you learned how to ground Large Language Models (LLMs) in both Google Search and custom data sources. By comparing grounded and ungrounded LLM responses, you witnessed the significant impact grounding has on response quality and accuracy. Furthermore, you gained practical experience creating and utilizing a data store in Vertex AI Search, enabling you to ground LLM text and chat models in your own documents and data.

Next steps / learn more

Check out the following resources to learn more about Gemini:

Google Cloud training and certification

...helps you make the most of Google Cloud technologies. Our classes include technical skills and best practices to help you get up to speed quickly and continue your learning journey. We offer fundamental to advanced level training, with on-demand, live, and virtual options to suit your busy schedule. Certifications help you validate and prove your skill and expertise in Google Cloud technologies.

Manual Last Updated May 15, 2025

Lab Last Tested May 15, 2025

Copyright 2025 Google LLC. All rights reserved. Google and the Google logo are trademarks of Google LLC. All other company and product names may be trademarks of the respective companies with which they are associated.

Zanim zaczniesz

  1. Moduły tworzą projekt Google Cloud i zasoby na określony czas.
  2. Moduły mają ograniczenie czasowe i nie mają funkcji wstrzymywania. Jeśli zakończysz moduł, musisz go zacząć od początku.
  3. Aby rozpocząć, w lewym górnym rogu ekranu kliknij Rozpocznij moduł.

Użyj przeglądania prywatnego

  1. Skopiuj podaną nazwę użytkownika i hasło do modułu.
  2. Kliknij Otwórz konsolę w trybie prywatnym.

Zaloguj się w konsoli

  1. Zaloguj się z użyciem danych logowania do modułu. Użycie innych danych logowania może spowodować błędy lub naliczanie opłat.
  2. Zaakceptuj warunki i pomiń stronę zasobów przywracania.
  3. Nie klikaj Zakończ moduł, chyba że właśnie został przez Ciebie zakończony lub chcesz go uruchomić ponownie, ponieważ spowoduje to usunięcie wyników i projektu.

Ta treść jest obecnie niedostępna

Kiedy dostępność się zmieni, wyślemy Ci e-maila z powiadomieniem

Świetnie

Kiedy dostępność się zmieni, skontaktujemy się z Tobą e-mailem

Jeden moduł, a potem drugi

Potwierdź, aby zakończyć wszystkie istniejące moduły i rozpocząć ten

Aby uruchomić moduł, użyj przeglądania prywatnego

Uruchom ten moduł w oknie incognito lub przeglądania prywatnego. Dzięki temu unikniesz konfliktu między swoim kontem osobistym a kontem do nauki, co mogłoby spowodować naliczanie dodatkowych opłat na koncie osobistym.